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but, aside from the simple case v/x = 0 discussed above, (9) seems to be of no help.
It is equally easy to write out the Fredholm type of solution of (3),
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but no use has been found for it.
3. Numerical example illustrating convergence.

s = 2y, v/x = 4, e/e = 4.

If we assume that 1, 2, 3, 4 and 10 % terms are enough, we compute in turn, k, =
2097, >k, = 2544, >3k, = .2692, > i k, = .2751 and D 2%, k, = .2807. The
sum of the first four of the k, in D .2, k, is .2797. The late terms in the sum are more
important indirectly in computing the earlier terms than in the sum itself.

THE TEMPERATURE IN AN ACCRETING MEDIUM WITH
HEAT GENERATION*

By A. E. BENFIELD (Cruft Laboratory, Harvard University)

The thermal problem of this note was solved with the hope of using it to try to test
the theory that the earth was formed by accretion on the dust cloud hypothesis;' but
there are many uncertain and unknown physical factors involved and, on reflection, it
seems that the contemplated thermal considerations are unable at present to help in
drawing conclusions. However, it is hoped that the following mathematical solution
may be of interest and aid to others having related problems involving less uncertain
physical conditions.

As the spherical case presents some difficulties, we shall merely consider here a

*Received March 25, 1949.
1See, for instance, F. L. Whipple, Scientific American 178, 34 (1948).
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homogeneous semi-infinite medium moving with constant velocity v in the positive
z-direction, as shown in Fig. 1. Material is supplied both at a constant rate and at a
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F16. 1. Curves of T'(z, t) as given by (5) fort = 0, ¢, and &, = 44, , when «, v, K and ¢, all equal unity.

The plane £ = 0, which is held at a fixed temperature 7' , represents the free surface of the accreting

semi-infinite medium at ¢ > 0. The dashed line of slope a/v represents the asymptotic value of the
temperature for large values of £.

steady temperature T, to the surface £ = 0 of the medium, in such a way that the
medium always exists continuously in the region 0 < z < «, while for £ < 0 there is a
vacuum. In other words, x is measured to the right from the free surface of an accret-
ing semi-infinite homogeneous medium.

Fort < 0and 0 < z < the temperature is everywhere a constant, T = T, . At
time ¢t = 0, however, the generation of heat begins throughout the semi-infinite medium
at the constant rate A cals/cm®sec and this heat generation continues indefinitely.
For t > 0 the surface 2 = 0 continues to be held at the constant temperature T = T, ,
and the material accreting at the plane £ = 0 contains the same uniform distribution
of heat sources, A cals/em’-sec, as the rest of the material in the region 0 < z < .
The problem, then, is to find T'(x, ) for this situation when¢ > 0and 0 < z < .

The appropriate differential equation is
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where ¢ and p are, respectively, the uniform specific heat and the uniform density of

tThe accreting material arrives at the plane £ = 0 with zero velocity, so that it carries no kinetic
energy, and hence no heat is evolved on its arrival.
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the homogeneous medium, and K is its diffusivity (defined as the thermal conductivity
divided by cp). Accordingly, K, v, 4, ¢ and p are all constants in this problem. _

Using the method of the Laplace transform we now introduce the quantity 7' =
L{T} = [5 ¢ T(x, t) dt, where p is a constant. Defining & = A/cp we may follow the
usual procedure of the Laplacian method and rewrite Eq. (1) as

T dT =
Kos—v - —pT+To+a/p=0, 2

which is a second order differential equation with constant coefficients. The solution
of Eq. (2) may be written as

T = % + 25+ €74y exp (al(07/4K) + p/K]Y

3)
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where A, and A, are functions of p, found by inserting the boundary conditions into
Eq. (3). Proceeding now to do this, we may say that (i) whenz = 0, T = Toand T =
T,/ D, from which it follows that a/p® = — (4, + 4,); and that (ii) asz — e, T— T, +
at, so that T — (T,o/p) + a/p’, from which we have 4, = 0.

Combining these values of 4, and A, with Eq. (3) we find that

T = 24 % — @/p)e™™ exp {—all/4K) + p/K]"). @

The inverse transforms of the first two terms are T, and «of, respectively, and, as shown
in a recent paper,”
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where
effcy=1—efy=1— 2(1r)'”2f exp (—u) du.
0
Our solution may now be written by adding the inverse transforms of Eq. (4); it is

— _ﬁ vz/K x+Lt) — _ <x_vt)}

T, t) = To + at % [e (x + vt) erfe (__2(Kt)"2 (x — vi) erfe 2®y7) - (5)
Curves of this expression for three values of the time are shown in Fig. 1. Equation (5)
is seen to reduce properly for the special cases of £ = 0, « = 0 and ¢ = 0. Furthermore,
it satisfies the differential equation (1), and it reduces as v — 0 to the appropriate ex-
pression for a stationary medium.’

2A. E. Benfield, Q. Appl. Math. 6, 439 (1949), in which Eq. (11) is equivalent to the transform given
here.

3Cf. H. 8. Carslaw and J. C. Jaeger, Conduction of heat in solids, Clarendon Press, Oxford, 1947, p. 60,
where Eq. (2) is for a similar but not identical case with » = 0.
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A point of some interest is the fact that, as time goes on, the slope 97T (x, t)/dx of
the curve of Eq. (5) does not increase without limit, but instead approaches an asymp-
totic value «/v, shown in Fig. 1. This asymptotic behavior may be seen by differentiating
Eq. (5) with respect to z, and then inserting the conditions ¢ >> x/v and t > K/v".

It is a pleasure to thank Professor P. Le Corbeiller, Professor F. Birch and Professor
F. Whipple for helpful discussions.

DEGENERATE TWO-DIMENSIONAL NON-STEADY IRROTATIONAL FLOWS
OF A COMPRESSIBLE GAS*

By N. COBURN (Unaversity of Michigan)

1. Introduction. A class of non-steady, two-dimensional, irrotational, compressible
flows which are very similar to steady, two-dimensional, irrotational, compressible
flows will be studied: In order to do this, we introduce the well-known potential equation
and Bernoulli relation for general non-steady flows. Our degenerate flows are defined
by requiring that two families of cylindrical characteristic surfaces (with generators
parallel to the time axis) exist in space-time. These flows have the following properties:
(1) the wave fronts are stationary; (2) each of the velocity components and the speed
of sound depends upon a single function of time multiplied by appropriate functions,
which we shall call “reduced” velocities, of the space variables; (3) the single function
of time is such that the motion decays as time increases. A canonical characteristic
system, consisting of five equations with five dependent variables (the reduced velocities
and the rectangular coordinates of the plane) and two independent variables, is ob-
tained. It is shown that simple waves do not exist. Finally, it is shown that a degenerate
non-steady flow, whose stream lines are logarithmic spirals, exists.

2. The system of flow equations and the potential equation. Let z’(A\ = 1, 2)de-
note a rectangular Euclidean coordinate system in the physical plane, and let ¢ denote
the time variable. If »* (\ = 1, 2) denotes the components of the velocity vector in the
z’-coordinate system, and p and ¢ denote the density and local speed of sound, re-
spectively, then the equations of motion and the equation of continuity may be written
as

oy Lo ¢ dp _
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In the above equations, the contravariant and covariant components of a vector are
equal since the coordinate system is Euclidean orthogonal. However, we have introduced
the notation of tensor analysis in order to use the summation convention.

*Received Jan. 31, 1949. This work was done under a University of Michigan contract with the
U. S. Army Air Forces.



