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A GEOMETRICAL INTERPRETATION OF THE RELAXATION METHOD*
By O. BOTTEMA (Technical University, Delft)

Let au , Bi (i, j = 1, 2, • • • , n) be given constants and consider the equations
n

X) anXj - Bi = 0, (i - 1, 2, • • • , ri). (1)i-i
As n increases, the solution by means of determinants becomes burdensome. Then

the relaxation method provides a set of easy steps by which the solution is approached.
Synge** has given a geometrical description which illustrates the relaxation process.

He confines himself, however, to the special case where the coefficients are such that
a,-,- = an and where, moreover, the quadratic form £ a^XiX,- is positive definite. In
his interpretation a set of homothetic ellipsoids in n-space plays a fundamental part.

The purpose of the present note is to give a simple geometrical interpretation for
the general case in which the matrix au is not necessarily symmetric.

If we substitute in the left member of (1) the arbitrary set of values y{ , we get

Z aity, - Bi = Rl°\ (2)
1=1

where Rt are the so-called residues. It is the task of the relaxation process to construct
a sequence of successively "better" sets of values so that the residues tend to zero.
Following Southwell, we do this by correcting one of the quantities y, say yk , while
the others are left unaltered. If yk is replaced by yk + rii , we get the new residues

R\v = R<0) + aikd, . (3)

Now let us regard R{ as the rectangular Cartesian coordinates of a point P in Euclidean
n-space. The purpose of the process is to approach the origin 0 of the coordinate system.
By means of (3) the arbitrarily chosen point P0 is replaced by Pi . It is obvious that the
direction of the line I = P0Pi is determined by the given coefficients; this direction is
specified by aik (i = 1, 2, • • • , n).

The procedure which we have to follow is not completely defined, but it seems
reasonable to move P from P0 in the given direction in such a way that its distance to
the origin becomes as small as possible. In this case dt has to be chosen so that the
quadratic function

dl £ c4 + 2d, £ aikR'r + £ (2?<0>)2i i %
is a minimum. Hence dy = ( — £a,^l°')/(£aL), and this is indeed the method fre-
quently used; it is in accordance with the principal of least squares. But it is clear that
Pi is the orthogonal projection of 0 on the line I; in other words, Pi is the projection of
P0 on the (n — \)-dimensional space through 0 which is perpendicular to the line I. Since
yk has now been corrected, we take another of the unknown quantities and proceed in
the same way.

It is thus obvious what kind of construction in our geometrical representation is
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the analogue of the procedure. We consider the (n — l)-dimensional spaces Vki
(i = 1,2, • • • , n) through 0, whose equations are ^ aik%i = 0. When we take arbitrary-
values for the unknown quantities and correct them in the order xki , xk, , • ■ • , the
construction runs as follows. An arbitrary point P0 is chosen in n-space; I\ is the or-
thogonal projection of P0 on Vkl ; P2 is the projection of P1 On Vk, , etc. And so the pro-
cedure is illustrated in a simple geometrical way. We add some supplementary remarks.
The point Pm (rn > 0) lies always in one of the spaces Vk . These spaces are linearly
independent if | aik | ^ 0. At each step (after the first) one of the Vki is projected by
parallel projection onto the following one. In this way, an affine correspondence is
established between the two successive Vki , the modulus of the affinity being cos a,
where a is the angle between them. Thus the convergence of the procedure can easily
be proved, provided that the corrections take place in a fixed cyclic order xkl , xk, , • ■ ■ ,
xkn where kx , k2 , •••,&„ is a permutation of 1, 2, • • • , n.

If two successive Vki are perpendicular to each other, the projection of the first
onto the second coincides with their (n — 2)-dimensional space of intersection. It
follows, therefore, that if all the Vki are mutually perpendicular (that is, if the matrix
|| aik || is orthogonal), the point Pi lies on Vkl , P2 on the intersection of Vkl and Vkl ,
P3 on (Vkl , Vk, , VkJ and so on; hence P„ coincides with O. In this case the procedure
ends automatically after n steps.

A SIMPLIFIED METHOD OF DIFFERENTIATING AND EVALUATING
FUNCTIONS REPRESENTED BY FOURIER SERIES*

By A. M. WINSLOW (University of Washington)

1. Introduction. This paper shows how to eliminate the difficulties caused by discon-
tinuities of Fourier sine series at the ends of the interval of periodicity.

Applications of Fourier series to exact solutions of problems in mathematical physics
involve the following essential considerations. In an interval — a ;£ x ^ a, it is assumed
that a function f(x) and its successive derivatives up to some finite order j'm) (a;) all comply
with sufficient conditions of continuity, bounded variation, differentiability and in-
tegrability. They thus permit representation by Fourier series, which can be differentiated
to give the derivative of next higher order, and integrated to give an expression for the
derivative of next lower order.

When f(x) is an a;-odd function, and /(a) /( — a) 0, particular difficulties are
encountered. The corresponding Fourier sine series is discontinuous at a; = ±a and
does not conveniently represent the values of/(a) and/( — a). In addition, the derivative
f'(x) is represented by a complicated Fourier series which is not readily evaluated at
x — ±a. Thus

CO

f(x) = Z &nsin P„x, (1)
1

in which /3„ = nir/a. The expression for the derivative is
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