
411

SOME IMPLICATIONS OF WORK HARDENING AND IDEAL PLASTICITY*
BY

D. C. DRUCKER
Brown University

1. Summary. The purpose of this note is to point out the severe restriction imposed on
possible stress-strain relations by a mathematical formulation of the concepts of work
hardening and ideal plasticity. Using this condition, an algebraic derivation and ex-
tension is given of Prager's extension1 of the Mises plastic potential function. A brief
discussion is also given of the meaning of stability of plastic deformation as contrasted
with stability of non-conservative systems in general.

2. Introduction. A mathematical theory of plasticity must of necessity be based upon
simplifying assumptions. For example, a good first approximation may be obtained
by ignoring time effects in most structural metals at room temperature under isothermal
conditions. A stress-strain diagram, therefore, represents a succession of states of static
equilibrium. Furthermore, it is an experimental fact that metals generally work harden;
then each equilibrium state is said to be stable. The phenomenon of the upper yield
point, exhibited by a few metals, notably mild steel, is an important exception. Another
exception is the region beyond the ultimate strength on a nominal tensile stress-strain
plot when necking occurs, Fig. 1. However, this real instability is in terms of force; the
actual stress continues to increase until failure occurs.
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Fig. 1. Plastic deformation.

3. Work hardening. The meaning of work hardening in simple tension is just that
stress is a monotonically increasing function of strain, Fig. 1. The plastic deformation
is then .said to be stable. For more general states of stress and paths of loading no such
simple picture can be drawn. The concept of work hardening, or stability in a restricted
sense, can be expressed in terms of the work done by an external agency which slowly
applies an additional set of stresses and then slowly removes them. The original con-
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figuration, or state of strain, may or may not be restored. This external agency is to be
understood as entirely separate and distinct from the agency which causes the existing
state of stress and which has produced the existing state of strain.

Work hardening implies that for all such added sets of stresses the material will
remain in equilibrium and further that

a) positive work is done by the external agency during the application of the set
of stresses, and

b) the net work performed by it over the cycle of application and removal is zero
or positive.

It should be emphasized that the work referred to is not the total work done by all
of the forces acting, it is only the work done by the added set on the displacements
which result. Rephrased, work hardening means that useful net energy over and above
the elastic energy can not be extracted from the material and the system of forces acting
upon it.

Consider a unit volume of material in which there is a homogeneous state of stress
au and strain et)- . Suppose an external agency to apply small surface tractions which
alter the stress at each point by dan > and produce small strain increments dei{ . Next
suppose the external agency to remove these added tractions, thus releasing the elastic
strain increments de. It then follows from condition (a) that (repeated subscripts
denote summation) da^de^ is positive and from (b) that da^ide^ — de'j) is either
positive or zero. Since the plastic strain increments de'j = de— de',- ,

dtTijide'ij + de'j) > 0, (1)

dander > 0. (2)

An equivalent manner2 of specifying work hardening which leads to (1) and (2) is
that as any set of strain increments is increased in ratio from any initial state of stress
and strain, more and more total and also plastic work per unit volume is required per
given change in any one of the components of strain.

4. Stress-strain relations (work hardening). In this section, two basic assumptions
will be made for a work hardening material.

1. A loading function exists. At each stage of a plastic deformation a function /(cr,-,)
exists such that further plastic deformation takes place only for /(<r,-,) > k. Both / and
k may depend upon the state of plastic strain and the plastic strain history.

2. The relation between the infinitesimals of stress and strain is linear. The sum of
the increments in plastic deformation, obtained separately from each of two sets of
infinitesimal stress increments da'u and da'k[ , neither of which constitutes unloading, is
the same as the plastic deformation resulting from

dcki — da'u + da'k[ , (df/daki)da'ki > 0, (df/daki)da'k' > 0.

Following the geometric proof given by Prager,1 it is necessary to show that any
dau representing loading, (df/dakt) dakl > 0, may be decomposed into da'kl and da'k[ ,

2D. C. Drucker, The significance of the criterion for additional plastic deformation of metals, presented
at the 1948 Annual Meeting of the Society of Rheology, J. Colloid Sci. 4, 299-311 (1949).
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where the arbitrary choice is made that d<r'k, produces no plastic deformation, and
da" is proportional to the gradient of f:

~ da'ki = 0; (3)
OGkl

dell = ~ dau ■ dcr'k'i = r-f-, r > 0. (4)
OGkl 0(Tki d(Tkl

This can always be done as (df/dakl) d<r'k[ — r(df /daki)(df/doki) > 0 and can be made
equal to (df/dakl) daki by a proper choice of r,

r _ (df/dcrki)d<Tki
(df/damn)(df/damn)

The linearity assumption states further that if all dakt are increased in ratio, all
duj are increased in the same proportion, so that

deVij ~ r

or

^ fQij ~z daki y (5)
OCTki

where the git may depend upon stress, strain, and their history but do not involve datt .
Using the work hardening condition, we can write Eq. (2) as

0 < dcud^j = deride*,- + dtr'/jde",- ,

for any dcr'j such that (df/daa) da', = 0, and for da" producing de", . Since the rela-
tionship dan = Cdtr'a + da'i'j also constitutes loading for all values of C, whether positive
or negative, and produces the same de, the work hardening condition becomes

C da'iMi + dal'idZi > 0. (6)
The term Cda'u dd'u is the work done on the plastic strain increments by a set of stress
increments which produce no plastic strain. Its magnitude must be zero, for if it were
not, a C could be chosen of proper sign and magnitude to violate (6).

Therefore,

r) ~f
da'ijde^j = da'^g^ dakl = 0

OCTkl

or

dc'aga = 0, (7)
where

(3)

Conditions (7) must be satisfied for all da'j satisfying (3) so that

Qii = (8)
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where G is a scalar which may depend upon stress, strain, and history. The only per-
missible stress-strain relation consistent with the two basic assumptions made at the
beginning of this section is, therefore,

del- = G -f- dakl . (9)
dan vVki

It is of interest to note that the work hardening condition (a) automatically insures
that unique increments of stress in the interior of a body result from given increments
in surface traction1, or, more generally, that the history of the state of stress at each
interior point is uniquely determined by the history of the surface loading.

5. Ideal plasticity. Ideal plasticity in simple tension is indicated by a horizontal line
on the stress-strain diagram, Fig. 1. The stress remains constant as the strain increases.
For more general paths of loading, ideal plasticity means that the work done by an
external agency which slowly applies and then removes a set of stresses is zero over an
equilibrium cycle. Equation (2), for a work hardening material, is replaced by

da,, del = 0 (10)
for an ideally plastic one. The equality in Eq. (2) applies only when de"u = 0 so that
the difference is by no means trivial.

6. Stress-strain relations (ideal plasticity). The further assumption of ideal plasticity
is that a function of stress alone, exists such that plastic deformation takes place
without limit when /(o\,) = 1c and that the material is elastic for /(<ri#) < k. During
flow, therefore,

-f- daif = 0. (11)
0<Tij

As all da a satisfying Eq. (11) must also satisfy Eq. (10),

«,-x£, (12)

where X is a scalar. The form of / may be as anisotropic as desired and of any degree in
the components of stress.

7. Stability of non-conservative systems. When a metal work hardens, the plastic

2 V\A/VV\A

Fig. 2. A simplified model of plastic flow. The
coefficient of friction is variable for a work
hardening material. Here dan dtPij > 0 is

required.

deformation is termed stable. The question arises as to whether this is stability in the
conventional sense. Figures 2 and 3 show that work hardening conditions (a) and (b) do
imply stability, while Figs. 4 and 5 show that the converse is not true.
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Suppose, in Fig. 2, that P is considerably less than the maximum permissible frac-
tional force F (conservative system case). Application of a small positive or negative
increment of force AP will produce a displacement of the end of the spring in the direc-
tion of A P. The external agency adding A P will do positive work in each- case and will

///
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Fig. 3. A model in which the elastic strain is not
recoverable directly. Here dan (de'n + dcPi,) >

0 is required.

do zero net work over a cyele of application and removal of A P. For a conservative
system, work hardening condition (a) is equivalent to a minimum energy principle.
Although not useful for such a system, condition (b) is always satisfied, as the net work
is zero.

Now let P equal the maximum permissible value of F for the position of the block,
and further suppose that the coefficient of friction will increase as the block moves to
the left. Under a decrement of force, the system acts in a conservative manner. How-
ever, an increment AP will stretch the spring and also move the block; for both reasons,
AP will do positive work. Removal of AP releases the elastic energy increment, but
the block remains in place. Consequently, the net work done by the external agency
over the cycle is positive. The system is obviously stable under disturbances AP; an
input of energy is required to displace the block. If the coefficient of friction decreases
as the block moves to the left, negative AP is required to maintain equilibrium when
the motion occurs. The work done by AP is negative, and the system is clearly unstable.
In this case, an equilibrium cycle is not possible unless the friction coefficient should
increase again, as the motion proceeds.

The system of Fig. 3 gives comparable but somewhat different results. Suppose P
to be equal to the sum of the maximum frictional force F for the position of the block
and the spring force S. If F remains fixed or increases with displacement to the left,
an increment AP in P does positive work. On removal of AP, the elastic energy increment
remains in the spring. Work hardening conditions (a) and (b) are satisfied, and the
system is clearly stable under possible disturbances AP; an input of energy is required
for motion. On the other hand, if F should decrease more than S increases, the system
is unstable. Work done by the external agency during the application of the additional
force required for equilibrium and over the complete cycle is negative.

Figures 2 and 3 illustrate the sufficiency of conditions (a) and (b) for stability of
the usual type; no displacement from the equilibrium position without an input of
work. They are one-dimensional examples, however, and the analogy between P and
stress and between displacement and strain is really not so close.

Figure 4 brings out the dissimilarity and also the more general problem of stability.
If V remains constant, Fig. 4 reduces to Fig. 2. However, if P = nN and V is increased



D. C. DRUCKER [Vol. VII, No. 4

by AF, P must be decreased by nAV to maintain equilibrium. Positive work is done
in the application of AF and — /xAV. If these added forces are removed in ratio, the
total work over the cycle is zero. If AF is removed first, the result is the same; but if
—mAF, the decrement in P, is taken away first, the block will displace to the left and

AA/VW w
 

I N = W-V
Fig. 4. Work can be extracted.

negative work will be done by the external agency over the complete cycle of application
and removal of the additional forces. Repeated cycles will cause continued displacement
of the block if the friction coefficient remains constant, but will produce no additional
motion, after the first cycle, if n increases. From one point of view the system is un-

IP ?

Fig. 5. Hydrostatic pressure and shear.

stable under the disturbances because the block will move without any external agency
doing work on it. More realistically and usefully, if the block moves only infinitesimally
for repeated infinitesimal disturbances (n increasing), the system would be considered
stable. The case of constant n would be termed neutral, and only if finite work could be

Fig. 6. Stability of non-conservative systems.

extracted for infinitesimal disturbance (n decreasing) would the term unstable be justified
in general for a non-conservative system.
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Another simple example of these distinctions is furnished by a block on a surface
inclined at the friction angle, Fig. 6. Assuming a constant coefficient of friction, if the
surface is a plane, infinitesimal disturbing forces applied to the block normal to the
plane will cause the block to move and continue to move down the plane for any finite
distance. During this downward motion the block cannot do a finite amount of work
on an external system, as the work done by the gravitational force is dissipated by the
frictional work. The term neutral seems appropriate. If the surface is curved so that
the slope becomes steeper as the block moves, the block will accelerate. Work can,
therefore, be done on an external system; for example, a spring may be compressed.
The system is unstable. If, on the other hand, the curvature of the surface diminishes
the slope, then an infinitesimal disturbance will produce an infinitesimal motion. Repe-
tition of the disturbance will cause no additional motion; the system is clearly stable.

The stability of plastic deformation implied by work hardening is stability in the
strictest sense. Even the infinitesimal motion for Fig. 4 with /i increasing is not per-
missible. Figure 5 emphasizes this feature for plastic deformation and is a truly critical
illustration of the concepts advanced. Suppose Fig. 5a to represent a portion of a work
hardening body subjected to a homogeneous state of stress composed of a hydrostatic
pressure p and a shearing stress r. Consider the external agency to apply and then re-
move a hydrostatic tension s and shearing decrement t. As Bridgman has shown,3 a
high hydrostatic pressure increases the flow stress of metals. For simplicity, assume the
yield stress in simple shear at some stage of plastic deformation to be given by

Ty = To + kp, (13)

where r0 is some initial value and A: is a positive constant. At p — s the yield value will
be r0 + kp — ks. Now let r = r„ and t = ks. The states of stress given by Figs. 5a and
also 5a plus 5b are then exactly on the yield or loading surface. If t is removed while s
is maintained, the body will deform plastically. Let the added hydrostatic tension be
removed next. If the assumption is made that the flow pattern is unaffected by the
hydrostatic pressure and is, therefore, simple shear strain, work will be extracted from
the system in the cycle. The same result can be obtained directly by taking Si = s
but U < ks. When Si and t, are applied simultaneously instead of s and t, negative
plastic work is done by tx , zero plastic work by s: ; dor,-,- dtu < 0.

This contradiction to Eq. (2) shows that such a material is analogous to the friction
example, Fig. 4, and is not truly work hardening despite the fact that tensile or shear
stress-strain curves would look entirely proper. However, the conclusion is not that work
hardening metals do not exist but is instead that real metals which do exhibit dependence
on the mean normal stress also increase in volume as the plastic deformation proceeds4
and that the plastic work done by s or Sj is more than that done on t or ti in most, and
possibly all, cases of engineering interest.

Taking the loading function / in Eq. (9) as

/ = +JY2 + dJ\ , (14)

3P. W. Bridgman, Effects of high shearing stress combined with high hydrostatic pressure, Phys. Rev.
48, 825-847 (1935).

4A. H. Stang, M. Greenspan, and S. B. Newman, Poisson's ratio of some structural alloys for large
strains, J. Research Nat. Bur. Standards 37, 211-221 (1946).
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where a is a constant, J2 = s,,-s1,/2, Jx = <rkk, si(- = o-,-,- — /Aj/3, illustrates but does
not, of course, prove this point. Loading, or further plastic deformation, results if

dcit = dW2) + a dJi > 0, (15)
da a

which always insures positive

. HJ>.. = a drr .. (
^d(Tki

dau dej, = Gda,,£L(^Ldakl).

The plastic stress-strain relation is

del- = G(^bi + «8„) df, (16)

and the plastic dilation is, therefore,

del, = 3aG df. (17)
For the loading shown in Fig. 5, the plastic increment in the engineering shearing

strain is

dy» = 2 devT = G df, (18)

so that

devkk/dyv = 3 a, (19)

where 3a is the small slope of the straight line relating the yield stress in shear to the
mean normal pressure, k in Eq. (13).

The preceding example shows that consistency is obtained and uniqueness of solution
assured if the small plastic volume increase which does occur is taken into account. It
does not, however, prove that some material system which can do work on an external
agent in a closed force cycle, does not, or can not, exist. The argument is only that such
a material is not work hardening. Moreover, it is found experimentally in the plastic
deformation of most metals in the range of engineering interest that the only energy
available is in the form of elastic energy, and that no additional amount of work can
be obtained from the system of forces acting on a plastically deformed metal which is
in a state of stable equilibrium. No work can be extracted in a force cycle, since the
elastic energy is the same at the beginning and the end of the cycle.

8. Conclusion. The usual basic assumptions of the theory of plasticity when coupled
with a mathematical formulation of the concepts of work hardening and ideal plasticity
require stress-strain relations to be of the Mises-Prager form, de",- = X(6//6o-,,). For
a work hardening material, X — G(df/dau) dakt . G and / may depend upon stress,
plastic strain, and the history of plastic strain.


