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where L = length of the taper in meters, X = wave length in meters, Rt = total resist-
ance of the inner conductor = RL, Ze = characteristic impedance of the uniform line
having an outer radius b and an inner radius a of the input of the tapered line, then

T ^ Z„ .

3. If 4iir/k\ Si 6, we will find that the series for U and W can be approximated by-
exponentials. In addition, if R[exp (JcL) — 1 ]/kZc S: 3.5, then

0.96 ^ (1 - E/)/(l — W) ^ 1.04.

Since kL = 1.3, and exp {kL) = 3.667, we find that (1 — U)/(1 — W) is nearly unity if

R,/Zc ^ 1.7.

Thus it can be stated that to satisfy the lower frequency range with a low VSWR,
the film length must be long (L = 0.6X), and the total resistance must be near the Zc
for extremely low frequencies. In the upper range of frequencies, we should have a total
resistance of 1.7 times the characteristic impedance Zc . Thus we must conclude for
practical reasons, that it would seem more advisable to use the tapered line for fre-
quencies above 1000 megacycles. Of course, if the restriction on the VSWR could be
lessened to permit a YSWR of 1.2 or 1.3, then a larger range of frequencies could be
covered by the linear tapered line.

CAPACITY OF A PAIR OF INSULATED WIRES*
By W. HOWARD WISE (Bell Telephone Laboratories)

1. Introduction. This problem has been treated in elegant fashion by Craggs and
Tranter.1,2,3 Their first two papers employ a conformal transformation of the free space;
the third paper works with charge distributions. They end up with an infinite deter-
minant of value zero in which the unknown capacity appears in one element, and
conclude that "satisfactory numerical approximations can be obtained by keeping only
the first few rows and columns".3

This note is written to remark that the end result of a straightforward attack with
bi-polar coordinates is

C = e0/Jlog - + ^ log * - E 4, (1)
k X 6 V n-l )

where C = capacity, «0 = dielectric constant of air, or other material outside the
jackets, e = dielectric constant of jacket material, s = interaxial separation, x = outer
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radius of jackets, v = radius of conductors, and the k are to be obtained from the fol-
lowing set of equations:

Fig. 1.

7fl\k\ 2k, 3&3 4^4 5A<5 • • • J ̂

— fci + m2fc2 — 6 k3 — lOfet — 15 k5 — ■ • • = 1/2,

— ki — 4 + m3A;3 — 20&4 — 35fc5 — • • • = 1/3,
(2)

—&! — 5k2 — 15 k3 + rriiki — 70 kb — • • • = 1/4,

— ki — 6 k2 — 21 k3 — 56ki + m5k5 — ... = 1/5,

where

;(f-m - e + f" + (e ~ €°)(v/*)2t I S)T _ (2t ~ !)!

« - e0 + (a + €„)(u/x)2t W t!(t-1)!

= lT - (2r - 1) !/t!(t - 1)!.

The r-th equation is

If one keeps n rows and n columns in the above set of equations, the result is identi-
cally the same as that obtained by keeping n + 1 rows and n + 1 columns in the in-
finite determinant in Craggs and Tranter's last paper.

2. Discussion. The series in k converges slowly when the two insulating jackets are in
contact. What is worse, if one stops with a small number of kn terms, say five, using (2)
as written, the resulting y.Li kn will be too small, not merely because there are only
five terms in the series but also because each k is too small. The consequence of all this
is that one should start out with the idea of using ten or twelve kn terms. Fortunately,
this does not mean that we have to solve ten or twelve simultaneous equations by
gradual elimination of the unknowns. Since the m are a rapidly increasing sequence of
large numbers, the solution may be arrived at by successive approximations.

If the wires were bare (x = v), the series in k would converge more rapidly; but in
this case
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mT = (s/v)2r - (2r - 1)!/r!(r - 1)!,

= kl/'fl')

kn = - log (1 - fcj),
n=l

h={ 1 - [1 - (2u/s)2J1/2}/2,
and (1) reduces to

C = e0/4 cosh-1 (s/2u)
(4)

= e„/4 log {s/2u + [(s/2u)2 - 1]1/2}.

When the two insulating jackets are in contact, s/x — 2, s/2v = x/v and

C = «„/4jlog 2 + — log - — E fc„}. (5)
\ € V n= 1 /

Fig. 2.

The correction term £ k„ in (5) is a function of e/e0 and v/x- Figure 2 is a plot of £ k„
versus v/x for e/«0 = 1, 2, 3, 4, 5 and <». The curve for e/«0 = 1 was not obtained by
direct computation of the k but by noting that if e = e0, then

C = «„/4[log s/v - £ k„]

= 60/4 log {s/2v + [(s/2u)2 - 1]1/2}
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and so
£ kn = log 2 - log {l + [l - (u/x)2]1/2}.

The upper end of the curve for e/e0 = 5 was fixed by noting that if v/x is close to unity
then fc„ ~ K/n, {mx + l)/bj = 1/(1 — k/), fcj = {1 — [1 — 4/(mi + l)]1/2}/2 and
£ K = log 1/(1 - h) - log 2/{l + [1 - 4/(m, + 1)]1/2}.

With v/x — 0 it is easy to solve (3) by the method of successive substitutions, thus
getting

2n ( oo "j

K = g ^ |i + gKvo/Pi)" - i] + £ gl[(v<-i/P'Y ~ (p.-z/p.-i)n]j, (6)

where

g = (e — «0)/(e + «o),

p = x/s,

p0 = 1, Pi = 1 - P2, p2 = 1 - 2p2, • • • , p, = p.-! - P2pt_2 ; (7)

CO 00

£ log Pi - X) gl log (p.p.-2/p?-i).
71= 1 i-2

With p = 1/2 we have

- zriog^. (8)
71= 1 71 = 2

This formula was used to check the more laborious computations based on (2) at v/x = 0.
Since I, = (s/u)2t if e = e0 , (7) with g = 1 and p = u/s gives £ f°r bare wires.

Thus

C = epilog- + log pi + £ log PtPt-2/Pi-i |
I P .=2 J

(4)

= e0/4^ log i + log lim p./p.-i

= e„/4|log -p + log | {1 + [1 - 4p2]1/2

= €0/4 log {s/2u + [(s/2f)2 - 1]1/2}.

It is easy enough to write out a solution of (3) by the method of successive substitu-
tions and so find that

i>„= tr Serf
71=1 71=1 71^ 71=1 'tI K = 1 K

| fin+K — 1 1_ V""* ̂ -tk + X-1 1
^ hkh -1 z, Gx-1 zxx 0)

CO -* CO | OD -4 CO -4

| \ , _ \ A S^Tl+K — 1 \ A /^K+X —1 jj_ \ y^fX + M—1 ■*" | .
I / i 7 / > ^ K — 1 7 / J ^X—1 7 / > 1 7 I * J

&/C X= 1 t-X M=1 ''mM71=1 K = 1
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but, aside from the simple case v/x = 0 discussed above, (9) seems to be of no help.
It is equally easy to write out the Fredholm type of solution of (3),

IX = - + J E - A„ , (10)
t A K=i K

where

' Kti K„
a = i - £ Klt + ^ i: £;

1=1 1=1 K=1

A.. = £..-£
KnK Knn

Kki Kkk

Kik Ktn Klv
•4 CO CO

+ ji £ E
^ • n= 1 m = l

■K-nK J^-nn Kn

nut Kmn K-m

and

K„ = ClT'/L,
but no use has been found for it.

3. Numerical example illustrating convergence.

s = 2x, v/x = .4, «/ «o = 4.

If we assume that 1, 2, 3, 4 and 10 ft terms are enough, we compute in turn, kl =
.2097, En-1 = -2544, £Li = -2692, K = .2751 and K = -2807. The
sum of the first four of the kn in E»-i is .2797. The late terms in the sum are more
important indirectly in computing the earlier terms than in the sum itself.

THE TEMPERATURE IN AN ACCRETING MEDIUM WITH
HEAT GENERATION*

By A. E. BENFIELD (Cruft Laboratory, Harvard University)

The thermal problem of this note was solved with the hope of using it to try to test
the theory that the earth was formed by accretion on the dust cloud hypothesis;1 but
there are many uncertain and unknown physical factors involved and, on reflection, it
seems that the contemplated thermal considerations are unable at present to help in
drawing conclusions. However, it is hoped that the following mathematical solution
may be of interest and aid to others having related problems involving less uncertain
physical conditions.

As the spherical case presents some difficulties, we shall merely consider here a

*Received March 25, 1949.
'See, for instance, F. L. Whipple, Scientific American 178, 34 (1948).


