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THE B.W.K. APPROXIMATION AND HILL'S EQUATION, II.*
BY

L. BRILLOUIN**
Cruft Laboratory, Harvard University

1. The B.W.K. Method. The B.W.K. procedure1 was discovered in connection with
problems of wave mechanics, where Planck's constant h was treated as a very small
quantity, and functions could be expanded in series of powers of h. The first terms of
the expansion correspond to classical mechanics (completed with some quantum condi-
tions) and higher terms represent typical wave-mechanical effects. Optical problems can
be discussed along similar lines, starting with "geometrical optics," and obtaining
"physical optics" (diffraction, for instance) as higher order corrections.

The B.W.K. method was discussed recently2 by the present author in connection
with its possible use in a purely mathematical problem, the discussion of Hill's equation.
The method sketched on this occasion proved very valuable and showed the need for
a more complete discussion of the whole question. It will be shown that the B.W.K.
procedure can yield a very good approximation in a great many mathematical problems,
and leads directly to asymptotic expressions similar to those obtained by P. Debye in
the case of Bessel functions.

There is a variety of problems leading to equations of the general type

§ + F(x)f = 0, (1)

where F(x) is a real function. We may, for instance, discuss wave propagation along a
linet whose properties vary from place to place. If W(x) is the velocity of propagation
and co the frequency, the solution is

*Received Dec. 10, 1948.
**Now with the International Business Machines Corporation.
'L. Brillouin, J. de Phys. 7, 353 (1926); G. Wentzel, Z. Phys. 38, 518 (1926); H. A. Kramers, Z.

Phys. 39, 828 (1926). For a more complete discussion and literature, see: E. C. Kemble, The fundamental
principles of quantum mechanics, McGraw Hill, New York, 1937, Ch. Ill; W. H. Furry, Phys. Rev. 71,
360 (1947). The first indications about a similar procedure are found in J. Liouville's papers (1837)
and H. Jeffreys' publications (1923).

2L. Brillouin, Q. Appl. Math. 6, 167 (1948); this paper will be quoted as L.B.H. 1.
fThe propagation of waves along a dissipationless electric line leads to the following equations

— — _7 — — W r\ i\
dx dt ' dx C dt ' ( ^

where in general l(x) and c(x) are two functions of x. One may introduce a new variable y defined by

lady = I dx, (A.2)
where k is a constant that may represent the average value of l(x). This yields

dV ,3/ dl l0dV
dy 0 dt dy C I dt (

and

,2C^F_n „dy2 lo I dt2 ~ °' (A"4>
an equation which corresponds to our general type (1). It should be noticed that (l/c)1'2 represents the
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fe'at (2)

with

j? uF ~ W2'

f satisfying Eq. (1). This representation will be found very useful and will enable us
to give a simple physical translation of our mathematical formulas.

Let us now consider a function

u = G e~ , S = f G dx (3)
J a

where G(x) is any given function of x. Straightforward computation shows that u
satisfies the following equation:

»"+»[G"-!(!)'+1 F] = °.
and a comparison between (4) and (1) leads to the condition

If this equation can be solved to a certain approximation, the function u of Eq. (3)
represents an approximate solution of Eq. (1). On many occasions, terms in G' and G"
can be omitted in Eq. (5), and a reasonably good approximation is obtained by taking

G = G0 = Fu\ (6)

This is the zero order approximation in the B.W.K. procedure, and the question is to
discuss its limits of validity.

A special case of importance was presented in the preceding paper (L.B.H. 1, p. 172).
With

<7>

terms in G', G" cancel out in Eq. (5) making (3) with (6) a rigorous solution of Eq. (1).

characteristic impedance of the line, hence the result: if l(x) and e(x) vary by the same amount, and c/ I
remains a constant, Eq. (A.4) reduces to the standard type of wave equation. There is no reflection and
no perturbation to wave propagation.

The change of variables (A.2) means that we measure the length of the line in "henrys" and not in
yards. We could also measure the length in "farads," by taking

Co dz — c dx (A.5)
and thus obtain another equation:

TP- (3-^ = 0 (A. 6)dz c dt
When I and c vary in such a way as to keep a constant ratio (constant characteristic impedance) Eq. (A.6)
is again a standard wave equation, and the variables y and z are proportional to each other.

These remarks show the connection between our discussion and the one given by Schelkunoff (5)
who considers the case of two independent functions l(x) and c(x).
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2. Systematic successive approximations. A systematic set of successive approxima-
tions can be worked out under the following assumptions:

Go
Go

< «>
G'0'

< t2, e2 « 1. (8)Gt
We may look for an expansion

G = G0 + (?! + G2 + • • • (9)

where the successive terms would be of order e2, e4, • • • , and substitute into Eq. (5):

Go = F1/2,

2goGi 3W 1 Go'
4 \GoJ 2 Go '

one 4- r2 - ? (GjX(G[ _G\ _\Gl(W _G\
2 \0j \G'0 G0) 2 Go \G" Go)' ( }

The expansion G of Eq. (9) would then yield, according to Eq. (3), a first solution of
Eq. (1),

u = G~1/2e~iS, S = f Gdx. (3)

The next step is to obtain another independent solution v of Eq. (1). Two cases
must be distinguished here: in the first case,

(A) F > 0, G real and positive, S real; (11)

v — u* — G~1/2e+iS,

the complex conjugate of u, gives a second independent solution. If we think of a problem
of propagating waves (Eq. 2), u corresponds to a wave propagating to the right, and v
to a wave propagating to the left. The second case arises when

(B) F < 0, G and S purely imaginary, i/2u real. (12)

In that case, we may use the general relation (12) of the preceding paper (L.B.H. 1,
Eq. 12),

uv' — vu' = C, (13)

which must hold between two independent solutions of Eq. (1). The constant C can be
taken as unity for convenient normalization.* When u is given, Eq. (13) represents a
first order differential equation for v and its solution is easily found as

v = Cu [ u~2 dx. (14)
Jo

The first case (11) corresponds to propagating waves; the second one (12) represents
attenuated waves without propagation.

*In the preceding example, where v = u* the constant C equals 2i.
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In any region x where our approximate solutions u, v can be obtained, the general
solution of Eq. (1) reads

/ = Au + Bv. (15)

The difficulty begins with the problem of connecting these different regions and choosing
in each of them coefficients A, B which will correspond to approximations to one and
the same solution of Eq. (1). This problem was first clearly stated by Kramers and
discussed by Kemble, Furry and other authors. We are going to discuss that problem
again and show that many important cases have been overlooked by previous authors.

3. Cases of exception—Connection of different regions. The method developed in
Sec. 2 is based upon assumptions (8) and stops working in the following three cases:

G0 0, (16)

—>0°, (17)

(18)
We must now discuss what happens when such critical conditions are realized.

Case (16) is apparently the only one which has been discussed by previous authors.
In the neighborhood of a point where the function F (Eq. 1) is zero, one may expand

F — b(x — x0)n, n > 0 (19)

and discuss the corresponding equation. Taking xQ = 0 brings the zero point to the origin,
and Eq. (1) reduces to

f" + bx"/ = 0 (20)
whose solution is (Jahnke-Emde tables, Dover ed. p. 147)

f = (21)

where Z is a solution of Bessel's equation of order 1/(n + 2). This covers the case
originally discussed by Kramers, when the F function has a single root at the origin

n — 1, F = bx

/ = x1/2Z1/3(^x3/2). (22)

Assuming b > 0, we consider both sides of the origin:

(a) x > 0, F > 0, Z1/3 = H[)l or H[% . (23)

Here the functions corresponding to the two B.W.K. solutions uT and u* (Eq. 11) are
the two Hankel functions. On the other side of the origin,

(b) x < 0, F < 0, Z1/3 = J1/3 or F1/3 . (24)

Here the functions corresponding to the B.W.K. solution Ui and to the second solution
vt (Eq. 14) are the Bessel and Neumann functions.
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Hence the B.W.K. approximate solution ur to the right is not the analytic con-
tinuation of the B.W.K. solution to the left, but

Ui goes over into 1/2 (ur + u*). (25)

A more complete discussion of this case is found in Kemble's book1 and in Furry's
paper. A refinement of that discussion was recently given by Isao Imai in a very in-
teresting letter to the Phys. Rev. 74, 113 (1948). If we take the case when Eq. (1) results
from a problem of wave propagation, as stated in Eq. (2), condition (16) corresponds
to the total reflection at the end of the line. This is apparent since ur and u* represent
two waves propagating in opposite directions, the superposition of which is needed to
match the Ui attenuated wave in the region where propagation is no longer possible.
This point of total reflection is often called a "turning point."

Cases*(17) and (18) correspond to rather sudden changes in the properties of the
line, with propagation on both sides of the discontinuity (provided F(x) remains positive).
This is a case of mismatch at^a junction and results in partial reflection as we shall see.

0
FIG. I

Let us consider first the case of condition (17), assuming that V becomes very large
at x — 0. This corresponds to Fig. 1 with an inflection point at K. Simplified examples
are shown in Figs. 2 and 3, when the function F has a discontinuity 2H at the origin,

K»H

K

K-H

T
2H

.1
0

FIG. 2 FIG. 3

or a very rapid change from K-H to K + H on & small interval — a < x < a. In
the case of Fig. 2, with a discontinuity in F, we have a solution on the left

fi = AiUi + BiVi (26.a)
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to match a similar solution on the right

fr = Arur + Brvr . (26.b)

We must write the continuity of / and /', and this determines Ar , Br when A, , Bt are
given, or vice versa. This was the procedure followed in the preceding paper (L.B.H. 1,
p. 169). Assuming the function F(x) to remain positive on both sides of the origin,
u and v — u* correspond to waves traveling in opposite directions. If we have a single
wave on the right (Br = 0) we need two waves on the left. Hence an incident wave
from the left generates a reflected wave traveling backwards and a transmitted wave
penetrating into the region to the right. This obviously means partial reflection at the
junction x = 0.

In the example of Fig. 3, we would use a solution (26.a) for a; < —a and (26.b)
for x > a, together with solutions of the type (22) in the interval — a < x < a:

f = xv\AH[)l{y) + BHl%(y)], y = (x - x„)3/2. (27)

We must write two continuity conditions at x = —a and two more at x = a, thus
enabling us to compute the 4 coefficients A, B, Ar , Br when At , Bt are given. The
net result is again partial reflection, and this is what should be expected to happen in
the more difficult problem of Fig. 1.

A similar situation is obtained in the case of condition (18), which corresponds to
a discontinuity in the derivative F'(x) and to a sharp angle in the curve F(x).

4. Example. Bessel functions.3 The differential equation for Bessel functions of
order n can be written (L.B.H. 1, Eq. 33)

•g + (e2* -n2)f = 0, (28)

ex = z, x = log z,

where z is the original variable. This is aii equation of type (1) with

F = e2x — n2, G0 = ±(e2* - n2)1/2. (29)

The B.W.K. method can be used for

I. z <3C n, x <3C log n n»l, or
(30)

II. n « z, x log n

and fails in the neighborhood of z = n, which represents a "turning point" (16).
In the first interval we expand

G0 = +m(l ~^e2'+ •••) (31)

The expansion (9) for G reads, with (10),

G = G0 + G, + ■ ■ ■ = G0 + | Go3G? - | Go2G'o' + • • • . (32)

sSee J. C. Slater and N. H. Frank, Introduction to theoretical physics, McGraw Hill, New York,
1933, pp. 148 and 347.
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In our present case (31) it is easy to check that all correction terms can be ignored,
since they are of order ri~3, n~5, etc.

Next we compute

S = J Gdx = C + inx — ̂  e2x = C + in log z iz2
4 n'

+

and our general expression (3) now yields

-£+£•+••■) <33>

where K(—i/n)1/2 represents just an arbitrary constant. This solution (33) obviously
corresponds to the J„ function

J- ~ K'°\l ~ w+T) + ■■■)- KV(l - s(' -;) + -•)•

A" = (34)2nnV

Both expansions (33), (34) coincide when n^> 1. We thus prove that in the first interval
(30) the B.W.K. method leads directly to the J„ solution.

The situation is different in the second interval, where z is larger than n:

G/ 2s 2\l/2 x —x0 = (e — n) ~ e — e ,

GZ = e* + Go' = ex - j e~ = G0 .
(35)

Correction terms in the G formula (32) can no longer be neglected and

O = e- + e"*(-| + | - j) + e- - - J),

S-[ Gdz-C + S + !«-(„• _i),C + 2 + i(B. _i),

e--Ke-( 1-

(36)

(T1/2 =

-{-1/2 — t S K -iz 1 I [ 2 1 \( i | 1« -p.' 11 + (•> - + (37)
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This reminds us immediately of the famous Debye4 approximation for Hankel's func-
tions when x is large, or of the rather similar expressions given by Hankel:

H«\z) = exp {-»(« - | (2n+ - iQn(z)l (38)

p _ (4n2 — 1)(4n — 9) „ _ 4n2 — 1
" " 2(8z)2 ' ^n~ 8z '

Except for a different K factor, Eqs. (37) and (38) check up to terms in 1/z2, but we
did not push our approximation far enough in Eqs. (36) and (37) to be sure to obtain
all terms in 1/z2 correctly. The preceding discussion exemplifies the problems discussed
in Sees. 2 and 3 about the fact that the B.W.K. solutions obtained in different regions
do not represent an analytic continuation of each other, and that their junction across
the borders of these regions needs special care. Debye also developed formulas for the
junction of his asymptotic solutions across a zero of the F{x) function; this intermediate
solution uses Bessel functions of order 1/3 just as the Kramer solution discussed in
Sec. 3.

This comparison teaches us furthermore:
1) that the series obtained by the B.W.K. method must be only semi-convergent in
general;
2) that they should represent a very good approximation to the actual function, since
this is the case with the Debye series. There are, however, some fundamental limitations
to the method of successive approximations developed in Sec. 2, Eq. (10), and a very
striking example will be found in the discussion of the Mathieu-Hill equation (Sees.
7 and 8).

In such cases, it is necessary to have recourse to a different set of successive ap-
proximations which will now be presented.

5. A second method of successive approximations. We want to discuss Eq. (1) with a
given function F(x), assuming we have been able to obtain the solution of a similar
equation

^ + H(x)u = 0 (39)

with a function H(x) that does not differ very much from the original F(x).5 For in-
stance, we may use a solution (3) of Eq. (4), where H represents the quantity in brackets
of Eq. (4), and the G function is one of the steps of our former approximations (9),
(10). We may try to use u as a first approximation and write

f = u + g, (40)
substituting in (1) and using (39)

f" + Ff — g" + Fg+(F - H)u = 0. (41)

4Jahnke-Emde, Tables of functions, Dover, New York, 1943, pp. 137-139; Smithsonian Mathematical
Formulae, Smiths. Inst., Washington, 1939, pp. 197-198.

6See S. A. Schelkunoff, Q. Appl. Math. 3, 348 (1946); M. C. Gray and S. A. Schelkunoff, Bell
System Tech. J. 27, 350 (1948).
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We now expand

g = 9i + 92 + S3 + • • • ,

g[' + II(Jl = (II - F)u, (42)

gl' + Hg2 = (H - F)Sl .

The physical meaning of the procedure can be explained in the following way: we start
from the wave equation (39), which obtains a solution (3) exhibiting pure propagation
and no reflections whatsoever. We use this equation (39) to build a set of equations
with right-hand terms representing a continuous distribution of sources along the line,
hence an emission of secondary wavelets, propagating in both directions and starting
from all points along the line, especially from points where (H — F) is not negligibly
small.

We are thus able to obtain a solution taking into account all the reflections on
possible irregularities of the line; this should lead to a better approximation than our
first method of Sec. 2. Schelkunoff5 has discussed practical methods for the integration
of Eqs. (42). These equations read

£>g» + Hgn = £ hjx), (43)

K = £ K{x) = (H - F)gn..

We know, from the discussion of Sec. 2, of two independent solutions u, v of the homo-
geneous equation (39), with the condition (13). With the help of u and v, the solution
of (43) becomes

gn{xiZo) = [ hn(y)v'(y) dy - ~ [ K{y)u'{y) dy (44.a)
C Jy=xO C Jy=xO

assuming g and g' to be zero at x0 . We thus have a method for working out the suc-
cessive approximations (42). The hn functions represent the fictitious sources distributed
along the line, resulting in additional waves propagating to the right (u function) or
to the left (v function) as explained before.

The solution (44) can be written in a different way after an integration by parts,

gn(xyx0) =. - [ K(y)v(y) dy + ~ [ K(y)u(y) dy, (44.b)
0«/^o C l/jy

and one should not forget that gn may always contain additional arbitrary terms (aw + bv)
satisfying the homogeneous equation.

6. The Mathieu-Hill equation, Floquet's theorem. The preceding discussion will
enable us to investigate successfully some types of Hill equations that were left out of
consideration in our previous paper (L.B.H. 1). But first of all, we must restate carefully
Floquet's theorem; it was not stated quite accurately in the preceding paper.

Hill's equation corresponds to our Eq. (1) when the function F(x) is periodic. Let
us call d the period (instead of r in L.B.H. 1):

F(x + d) = F(x). (45)
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Let u(x), v(x) be two independent solutions of Eq. (1). We obtain another set of inde-
pendent solutions by considering u(x + d) and vix + d), since conditions are identically
the same at x and x + d. This means that we must have linear relations

u{x + d) = a^x) + biv(x),
(46)

v(x + d) = a2u(x) + b2v(x),

expressing the new set in terms of the old one. Here we remember Eq. (13), which
specifies that

u{x + d)v'(x + d) — v(x + d)u'(x + d) = u{x)v'(x) — v(x)u'(x) = C;

hence the relation

dib2 — a2bi = 1. (47)

The (a, b) matrix has a determinant 1. A suitable linear combination of the original
u, v may simplify the relations (45) by making this matrix diagonal. We choose

U(x) = u + hv (48.a)

U(x + d) = £U(x). (48.b)

and want to obtain

This means that

fli -f- a2h = ij,

bi ~[- b2h — £h

and eliminating h, that

GL\ £ @2
= f - (a, + b2)Z +1=0. (49.a)

bi b2 £

The product of the two roots of this equation is 1, and we have

£ + £ 1 — 0,1 + b2 . (49.b)

The relation (48) can be expressed differently as

Ui{x + d) = tUrix), Ux = (50)

£ = e"d, $i periodical, period d

and similarly

U2{x + d) = f1U2{x), U2 = e~"x$2(x)

with two different functions $i , <f>2 both of period d. This is the general statement of
Floquet's theorem.

When F(x) is an even function, it is easy to see by symmetry reasons that

<J>2(a;) = $i(-x) (51)
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in which case (and only in this case) we obtain the conditions (2) or (4) of L.B.H. I.6
As for Eq. (49.b), it now reads

2 cosh (/.id) = ax + b2 , (52)

a general result of great importance, as will be seen in the next sections. The condition
(47) concerning the (a, b) matrix and the final relation (52) are exactly similar to those
obtained in the theory of filters.

7. Stopping and passing bands, general discussion. The first essential step in the dis-
cussion of Hill's equation is to obtain the value of the exponent n. A method yielding
the n value was discussed in L.B.H. 1 and resulted in a relation (L.B.H. 1, Eq. 18) of
the following structure:

cosh (nd) = \p(d), (53)

where \p was a certain function of d. The method developed by Whittaker results in a
formula of similar type (L.B.H. 1, Eq. 23) and our Eq. (52) is also similarly built. The
solution of (53) will give

nd = 130 + ia o (54)

where /30 is the attenuation constant per period d, and a0 the propagation constant,
determined modulus 2t. From the form of Eq. (53) it is obvious that if a0 be a solution,
then

a'0 = a0 + 2nir (n integral)

is another one. The function \p may depend upon a variable coefficient k. In the case
of Eq. (2), k may be the variable frequency u, or it may represent the energy E in a
problem of wave mechanics.

In such problems the discussion of Eq. (53) proceeds as follows. We first plot ip as
a function of k, and obtain a curve such as the one represented in Fig. 4 (this curve

  (X FIG. 4 J3
6Since Floquet's theorem was not used through the rest of the paper L.B.H. 1, this omission was of

no practical consequence.
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was drawn so as to show some typical features of the problem). We obtain passing
bands when

/30 = 0, or — 1 < ip < +1. (55)

When, on the contrary, we obtain

I i I > 1 (56)
this means that /30 5^ 0 and there is a stopping band:

\p > 1, a0 = 0 or ± 2nir,

\[/ < — 1, a0 = ±7r or ± (2n + l)ir.

The a, (3 curves corresponding to Fig. 4 are plotted in Fig. 5 as an illustration of the
general procedure. It is interesting to notice that stopping bands always correspond to

a0 — ±mir (to integral) (57)

or, if we introduce a new quantity a,

 _ m
a 2iri' 2ird'

ar being the real part of a. This condition corresponds to the general results about the

FIG. 5
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limits of the Brillouin zones in one-dimensional problems.7 There is, however, a funda-
mental difference between the method followed in the present paper and the discussion
given in the book just quoted. The method previously used was designed to give in-
formation only about the passing bands. Propagation was assumed from the beginning
and the n value was chosen as the independent variable

ix = 2 via, (58)

where a = 1/X is real, X being the wave length. Equations (1) and (45) were then dis-
cussed in order to obtain the corresponding value of the parameter k (k being the fre-
quency in case of Eq. (2)). This method gave us k(a) in the passing bands and indicated
the stopping band only indirectly by the fact that some k intervals could not be obtained
in the discussion.

Here, on the contrary, we start with any given k value and compute the corre-
sponding complex fi (54) that shows either pure propagation or attenuation. Instead of
computing kQu) we investigate the behavior of n(k), and we obtain information about
the properties of the stopping bands in addition to the characteristics of the passing
bands. Thus the graph of Fig. 5 shows the variation of the attenuation /3 in addition
to the propagation coefficient a. Former graphs contained only a.

8. Stopping and passing bands with the B.W.K. method. The important question to
be discussed next is: how much information about passing and stopping bands can we
obtain through the B.W.K. method? The answer is rather,surprising: no practical answer
is obtained through the direct B.W.K. procedure of Sec. 2, and only the second method of
Sec. 5 can yield a reasonable solution of the problem. We gave a hint at these essential
limitations of the original B.W.K. procedure at the end of Sec. 4. Let us explain it in so
many words.

The B.W.K. procedure of Sees. 1 and 2 makes use of waves (Eq. 3) that may be more
or less distorted but always propagate freely without exhibiting any reflection. If, on
the other hand, we investigate the cause for the stopping bands of the preceding section,
we discover that they are due to a phenomenon of cumulative reflection: each cell of
length d reflects back a certain amount of the incident wave, and all these elementary
wavelets, propagating backward, happen to be sufficiently "in phase" to produce a
large reflected wave that takes up most of the energy of the incident wave. Such a
result can be obtained only through the procedure of Sec. 5, which takes into account
the possible local reflections; the method of Sec. 2 cannot give any information on such
problems.

The discussion will be clearer if we start with a problem involving no process of
approximation. Let us take the case of Eq. (4), the rigorous solution of which is given
by (3). The function G(x) is any arbitrary real periodic function of x (period d). Here
we are dealing with an equation of Hill's type, where F(x) is represented by Eq. (5).
The two independent solutions are

u(x)\

u*(x) j
= G e" , S = f G dx] (59)

J a

7L. Brillouin, Wave propagation in periodic structures, McGraw Hill, New York, 1946 (p. 6 Fig. 2.4,
p. 8 Fig. 2.7, p. 15 Fig. 3.9, p. 57 Fig. 15.4, p. 68 Fig. 17.2, p. 103 Fig. 27.1, p. 113, pp. 118-120, pp.
143-145).
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hence

u(x + d) = G(x)~1/2e~iSix+d)

and

S(x + d) = S(x) + f Gdx = S(x) + f G dx. (60)
J X Jq

Comparing (60) and (50) we obtain

(-•/:e" = exp I —i G dx

or

nd=—i G dx + 2nm, (n integral) (61)
^0

•7i i •
n — —iG + ni —j-,

where G = \ f G dx
d J o

(62)

is simply the average value of G. Hence the B.W.K. method yields directly the very
important quantity n, together with the fact that n is defined only modulus i 2ir/d.

The function G(x) may depend in any arbitrary way upon a parameter k, but so
long as G remains real the formula (62) always retains its validity. Instead of the types
of curves shown in Fig. 5 we obtain a graph of the type of Fig. 6, with curves inter-
secting each other when a = mir.

This proves that our Eq. (4) exhibits very exceptional features and represents a
poor approximation to the general Hill equation. It has a continuous passing band
and no stopping bands whatsoever.

9. The Mathieu-Hill equation discussed with the method of Sec. 5. The discussion of
Sec. 8 shows that the B.W.K. method does not lead to a practical solution of equations
of the Mathieu-Hill type. The method developed in Sec. 5 will give us the necessary
correction and enable us to obtain a much better approximate solution.

We start with the solutions u and v = u* of Eq. (59), that satisfy a B.W.K. differ-
ential equation (39)

u" + H(x)u = 0,

^ e„ (39)b-c-z{£)' + \ G
according to Eq. (4). The G{x) function is periodic and exhibits the same period d as
the original Hill equation

/" + F(x)f = 0. (1)
We assume that the function G has been obtained through the procedure of Sec. 2
(Eqs. 9, 10) and that II (x) differs very little from F(x). We now use the second approxi-
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mation represented by Eq. (44b), and we obtain two independent (approximate) solu-
tions of (1):

U(x) = u(x) + = A(x)u + B(x)u*,
(63)

U*(x) = u*(x) + g*(x) = B*(x)u + A*(x)u*,
with

A(x) = 1 — - f (H — F)uu* dy,
C J V = Xq

(64)
B(x) = - r (H - f>2 dy, c = 2i,

C " y=xo

Since Eq. (43) yields

ftj(y) = (H - F)u H - F real, (65)

for this second approximation. Our solutions (63) will satisfy relations (46)

U{x + d) = a1C7(x) + bJJ*{x),
(66)

U*(x + d) = a2U(x) + b2U*(x),

where obviously
a2 = bf, b2 = af,

and Floquet's exponent results from Eq. (52)

cosh (nd) = 1/2(0,! + b2) — (Re (aL), (67)

(Re meaning "real part of." Hence the only thing we need is the coefficient at in Eq. (66).

We can easily obtain this information from Eq. (63), taking

x = x0 + d,

U(x o + d) = A( x0 + d)u(x0 + d) + B(x0 + d)u*(x0 + d). (68)

The discussion of Sec. (8) shows that

u(xo + d) = exp (nod) u(x0),

n o = —iG

but, at x0 we have A = 1, B = 0, hence

u(x 0) = U(x 0)

and Eq. (68) reads

U(x0 + d) = A(x0 + d) exp (ii0d)U(x0) + B(x0 + d) exp (—n0d)U*(x0). (69)

Comparing Eqs. (66) and (69) we obtain

Ol = A(xo + d) exp(n0d) = exp( — iGd) 1 — ̂  J (H — F)uu* dyJ (70)
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according to (64). This gives us the coefficient ai we need in Eq. (67):

cosh (ixd) = (Re exp( — iGd) 1 + | ,/J (71)

with real

J = ["** CH - F)uu* dy,
J x0

hence

cosh (nd) = cos (Gd) + 1/2 J sin (Gd), (72)

and we finally obtain the Floquet exponent we were looking for. Passing bands corre-
spond to conditions when

— 1 < cosh (fid) < +1,

and stopping bands appear when

| cosh (ixd) | > 1 (73)

as explained in Sec. 7. The B.W.K. method of Sec. 8 never gave any stopping band. Our
second approximation (72) may give stopping bands when

Gd = m-K + e,

cosh Old) = (-ir(l + 1/2 Je) + ■■■ . (74)

These stopping bands appear in the neighborhood of the points Gd = mx where the
curves of Fig. 6 intersect each other.

This proves that the B.W.K. method must be completed with the approximation
process of Sec. 5 in order to yield a solution of Hill's equation. The procedure sketched
in this final section seems to represent one of the most practical approaches to the
problem of Hill's equation, in addition to those cases that were discussed in a previous
paper (L.B.H. 1).

Thus far, we have discussed only the first step in the series of successive approxima-
tions according to the procedure of Sec. 5. It may be found necessary to go some steps
further and to use the expansion (42), in which case our formulas (63) could still be
maintained. But Eqs. (64) would read

A(x) = 1 - J"~* (H - F){u + g, + • • • + gn)u* dy (75)

if the n first approximations of (41) were used. This would simply mean a similar cor-
rection in Eqs. (70) and (71). Then

J = [ (H — F)(u + + • • • + g„)u* dy = Jr + iJ{ , (76)

J would no longer be real and Eq. (72) should be modified to

cosh (jad) — (l — cos (Gd) + | Jr sin (Gd). (77)

This should give a more accurate definition of the passing bands and stopping bands.
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10. Conclusions. The principle of the B.W.K. method, as stated in Sec. 2, consists
essentially in a procedure of successive approximations starting from a solution of
Eq. (6), that simply represents the Hamilton-Jacobi equation of the problem:

- f- {*£)' - "■ (78)
In a three-dimensional problem, the wave equation (1) reads

V2/ + Ff = 0, (79)
and Eq. (6) yields the Hamilton-Jacobi equation

iff + iff + (ff - F <80>
as was shown in the paper in J. de Phys. 7, 337 (1926), Eq. 13.

G(k)

-2TT

FIG. 6

The successive approximations of the B.W.K. procedure represent a semi-convergent
series, similar to the well-known Debye series for Bessel functions (Sec. 4). This proves
that there is a limitation to the accuracy of the method, and that nothing can be gained
by increasing too much the number of terms in the series.
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The reason for this is easy to understand and was explained in Sec. 3. The Hamilton-
Jacobi equation always leads to pure waves, propagating without reflection, as ex-
emplified in Eq. (3). Taking the example of wave-mechanics, where

F = 2m{E - V) (h = 2tt) (81)
we obtain in (80) the Hamilton-Jacobi equation of classical mechanics. Let us consider
a problem of particles hitting a potential hill: they will go over the hill if their energy
is large enough, or be completely reflected when their energy is too low, but we shall
never obtain partial reflection with some particles reflected and some others climbing
above the hill. This sort of thing, however, happens with the wave equation (79), and
we discussed in Sec. 3 some typical instances where partial reflection must take place.

This proves that after obtaining the best possible approximation with the B.W.K.
method of Sec. 2, we must turn back to the original wave equation and use the method
of Sec. 5. The discussion of Hill's equation (Sees. 6-9) exemplifies the need for this cor-
rection and shows how to apply it to a practical problem.


