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ON FREE VIBRATIONS WITH AMPLITUDINAL LIMITS*

By AUREL WINTNER (The Johns Hopkins University)

1. Consider a differential equation of the form

y + a^y + a2(t)y = 0 (1)

or, more generally (placing

Xi = y, x2 = y (2)

and n = 2), a system of n differential equations

n

Xi = X) o.ik{t)xk , (i — 1, • • • , n), (3)x
*-i

where every coefficient function a(t) is given as continuous for large positive t, say for

f < t < oo. If A denotes the matrix (aik), and x the vector {xi , • • • , xn), then (3) can

simply be written as

x = A(t)x. (4)

Since n can be replaced by 2n, there is no loss of generality in assuming that ait , x{ in

A, x are real-valued. This will always be assumed in what follows.

The trivial solution, x(i) = 0, of (4) will be excluded. Then, if x(t) is any solution

vector of (4), there cannot exist any t0 for which x(t0) = 0 (where 0 is the zero vector).

For, on the one hand, x(t) = 0 is a solution of (4) satisfying the initial condition x(t0) = 0

and, on the other hand, any initial condition determines a solution x(t) of (4) uniquely.

Accordingly, if r(t) denotes the length of the vector x(t), then

x(t) = r{t)e(t), where r(t) > 0 and | e(t) | = 1 (r = | x |). (5)

The positive scalar r(t) and the unit vector e(<) will respectively be referred to as the

amplitude and phase factor of the solution x(t).

Various conditions are known which, when satisfied by the matrix function A(t),

will assure for the system (4) the following type of asymptotic behaviorf: Every non-

trivial solution vector x(t) of (4) tends, as t —>oo; to a non-vanishing limit vector; in

other words, every amplitude r(t) tends to a finite, positive limit r( oo), and every phase

factor e(t) to a certain unit vector e(<»). From the point of view of the theory of vib-

rations, there are two objections to any criterion of this type.

The first objection is that, although such a criterion can be made applicable by

using the method of the variation of constants**, it cannot apply directly to simplest

vibration problems. In fact, even if the problem is that given by the case a^t) _= 0,

a2{t) — 1 of (1), that is, by the linear oscillator y + y = 0, it is seen from (2), where

Xi = c cos (t — 7), x2 — — c sin (t — 7) in the present case, that the above phase factor

e{t) fails to tend to a limit; although the limit, r( 00); of the amplitude exists and is

positive, since r(t) = | c | = const. > 0 (unless x(t) = 0).

*Received Sept. 20, 1949.
fA. Wintrier, On linear asymptotic equilibria, Amer. J. Math. 71, 853-858 (1949).

**A. Wintner, Small perturbations, Amer. J. Math. 67, 417-430 (1945).
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The second objection is that any criterion of the type in question becomes too severe

by necessity. For, if only r — \x\, rather than x = re (that is, r and e) is desired, then

there becomes involved that issue which, on the one hand, is precisely the hard part

of the problem and which, on the other hand, was not required at all. In fact, if the phase

factor of a solution is known, then the amplitude of the solution (hence, the solution

itself) can be obtained by a quadrature.

In order to see this, it is sufficient to observe that, since r2 = x.x, hence rr = x.x,

scalar multiplication of (4) by x gives rr = x.A(t)x. It follows therefore from (5) that

rr = r2e.A(t)e, hence (log r) = e.A(t)e. Consequently, if e = e(t) is known, then log

r(t) follows by a quadrature.

2. In what follows, a criterion will be developed which deals only with the problem

of asymptotic amplitudes, without any reference to phase factors, and is therefore free

of the above objections. In other words, a condition will be deduced which is not violated

by vibration problems (such as y + y = 0) and which, when satisfied by the coefficient

matrix A(t), is sufficient to ensure for the corresponding system (4) the following prop-

erty:

The amplitude function, r(t) = | x(t) |, of every non-trivial solution vector, x = x(t),

of (4) tends to a finite, non-vanishing limit, as t —»oo. For the sake of brevity, such a

system (4) will be said to be of type (*).

If a prime denotes the operation of transposing a matrix A = (aik), that is, if A' —

(iaki), then the criterion in question can be formulated as follows:

Let X denote the least, and n the greatest, characteristic number (eigenvalue) of the sym-

metric matrix (1/2)(A + A'), where A is any real matrix. For large positive t, say for t° <

t < oo, let A = A{t) be a continuous function, and suppose that the corresponding continuous

functions X = X(<), n(t) are integrable over the half-line t° < t < oo f that is, that the integrals

-r „t

lim f \(t) dt, lim f n(t) dt (6)
J T-+ oo J

are convergent. Then the system (4) is of type (*).

It is worth emphasizing that /" | \(t) \ dt = oo or /" | n(t) dt — oo is allowed, that is,

that the absolute convergence of the integrals (6) is not required.

3. First, if £ = (^ , •••,£„) is any vector, then

UH = hUA + A')£ (7)
is an identity, since

n n n n

Z-Al; = 23 aikZ£k and 2?-(^ + -^')f = 23 23 i(.an> + a-ki)££k ,
• «1 >-1 i = 1 k-1

where A = (aik), A' = (aki). On the other hand, if X denotes the least, and n the greatest,

eigenvalue of a real, symmetric matrix B, then X is the minimum, and n the maximum,

attained by the (real) quadratic form on the unit sphere, | £ | = 1. If this fact is

applied to the matrix B = (1/2)(A + A'), it follows from (7) that

X < £.4? < /u if I £ I = 1. (8)

Next, if r = r(t) denotes the amplitude, and e — e{() the phase factor, of an arbitrary

non-trivial solution vector x = x(t) of (4), then, as verified at the end of Section 1, the

logarithmic derivative of r(t) is identical with e(t).Ae(t), where A = A(t). Since the
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hypothesis, | £ | = 1, of the inequalities (8) is satisfied by the vector £ = e(t), it now

follows from (8) that

X(<) < d log r(t)/dt < n(t). (9)

Finally, if t° < u < v, integration of (9) between t = u and t = v gives

f \(t) dt < log r(v) — log r(u) < f n(t) dt.
J u *u

On the other hand, the convergence of the improper integrals (6) means that

f \(t) dt —> 0 and f ii(t) dt —* 0 if u —, v —.
J u J u

But the last two formula lines imply that log r(v) — log r(u) —> 0 as m —><*>, v —><*>.

This means that the logarithm of r(t) tends to a finite limit as t —>oo. Since this is equva-

lent to the statement that r(t) itself tends to a finite non-vanishing limit, the proof is

complete.

A GENERALIZATION OF ALFREY'S THEOREM FOR VISCO-ELASTIC MEDIA*

By H. S. TSIEN (California Institute of Technology)

1. Introduction. For the non-homogeneous stresses in isotropic incompressible visco-

elastic media characterized by linear relations between the components of stress, strain

and their derivatives with respect to time, T. Alfrey has shown (Ref. 1) that in the

case of the first boundary value problem, the stress distribution is identical with that

in an incompressible elastic material under the same instantaneous surface forces. A

similar result was obtained for the second boundary value problem where the displace-

ments at the boundary are specified. It is the purpose of the present note to generalize

this theorem to isotropic compressible media for problems involving body forces. Only

the first boundary value problem will be discussed, as the corresponding theorem on the

second boundary value problem is self-evident.

2. First boundary value problem. Let the displacements along the x, y, z directions

be u, v, w. Then the typical expressions** of the six strain components can be written as:

du
e* ~ dx '

_du dv

7*"-di + Tx-

(i)

If the six stress components are denoted by ax , <ry , <rt , rxy , r„s , t,x , the components

*Received Sept. 7, 1949.

""Throughout this note, only typical expressions are explicitly given; other expressions can be readily

obtained by cyclic permutations.


