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THE CAUCHY RELATIONS IN A MOLECULAR THEORY OF ELASTICITY*

BY

IVAR STAKGOLD

Cruft Laboratory, Harvard University

1. Introduction and summary. If an elastic body is considered as a continuum, the

existence of a "strain energy density" can be ascertained.

Using a molecular theory of elasticity, we can deduce the existence of an energy

function of the internal forces between particles. It will be shown that this energy

function can be expressed as a function of an adequately defined strain. In the case of

a monatomic crystalline body, this energy function corresponds to the strain energy

density of a continuous body. For a multiatomic crystalline body, an analogy with the

strain energy of a continuous body can be drawn.

But in all these cases, it will finally be possible to write the energy density as:

<t> = <£(«<>)•

We can then assume the existence of a suitably convergent series expansion for

</> = 4>o + + A" 'hkenehk + ••• ,

(1.1)
= $0 + 4>l + <t>2 +

(see [l]f p. 230). The usual summation convention for an index appearing once covariantly

and once contravariantly is used here. The coefficients A"'" of the quadratic term in

the expansion are those involved in the so-called "Cauchy relations."

We observe that A"'" is a three-dimensional tensor of the fourth rank, and, as such,

can have up to 81 independent components. By inspection of (1.1), we notice a number

of restrictions on A"'" which immediately reduce the number of independent com-

ponents.

Let us call (i, j) the indices of the first group and (h, k) the indices of the second

group. It is clear that we can choose the coefficients A"'" to be symmetric in the two

groups, i.e.,

A"'4* = A"*". (1.2)

Since e,,- is a symmetric tensor, it is also evident that we can choose A*''" to be sym-

metric with respect to indices of both the first and second group. Hence:

  j^tj,kh   ^

Taking into account these additional conditions on A, we conclude that only 21 inde-

pendent components remain from the original 81.

The Cauchy relations are not included in (1.2) nor in (1.3), but consist of six addi-

tional relations

A"'" = a'*"'* = A'*'*1 = ••• , (1.4)

*Received Jan. 25, 1949.

fNumbers in the brackets refer to the bibliography at the end of the paper.
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whose validity we are to investigate. In other words, we are to find out whether A"'"

is completely symmetric or only partially symmetric to the extent given by (1.2) and

(1.3).
This formulation of the problem was given by Brillouin ([1], p. 234) and previously

suggested by Voigt ([5], p. 607) and Born ([2], p. 554).

Within the framework of a continuum theory, no relations of the Cauchy type can

be arrived at. It is only when we picture the elastic body as a set of particles with in-

teracting forces that we can hope to arrive at the Cauchy relations. Naturally, we expect

these relations to hold only under certain specific assumptions as to the type of body

and the type of interacting forces.

It is the purpose of this paper to discover the assumptions necessary (or sufficient)

to insure the validity of the Cauchy relations.

2. Historical summary of work on the Cauchy relations. As has been pointed out

previously, all the investigations on the Cauchy relations must be based on a molecular

theory of elasticity.

Born was the first (at least to the author's knowledge) to discover the fundamental

distinction between the monatomic and the multiatomic cases. All previous authors

had assumed that the concept of strain, as defined for a continuum, could be applied

without any modifications to a molecular body. Born proves conclusively that this

transfer is permissible only for a monatomic body, where each particle is a center of

symmetry. He shows that the concept of a continuous strain could not be used directly

for the multiatomic body. The other authors discussed in this chapter do not make this

distinction, and their work is, therefore, only applicable to monatomic bodies.

The Cauchy relations were claimed by Cauchy to be valid for the case of a molecular

body in which the interactions between particles are central forces. Many writers have

verified the Cauchy relations in the case of central forces and have shown that these

relations are not valid if the interaction forces are not central (see [2], p. 555; [3], pp.

47-49; [5], pp. 607, 608). All these verifications (except Poincare's) are based on a linear

approximation to the strain tensor, rather than the correct expression for the strain

tensor. The error, thereby introduced, will be shown to be of the order of magnitude of

the remaining terms.

The method of attack used by the majority of authors (including Voigt and Born)

involves a series expansion for the energy function <j> in terms of the Cartesian displace-

ment components of the individual particles. After such an expansion is obtained, the

displacement is expressed in terms of the local strain and is then substituted in the

expansion. The resulting series for <p is a development in terms of the strain. The co-

efficient of the quadratic term is examined to ascertain the fulfillment of the Cauchy

relations.

The difficulty of the method lies in expressing the displacement in terms of the strain.

This involves the solution of the set of non-linear partial differential equations of the

first order,

_ I (dSf dsA 1 ds^ dsk , .

6ii - 2\^ + dy<) + 2 dy< dy< ■ (2-1}

Within the region of appreciable molecular interaction, it can be assumed that e,-,- is

constant.
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In the one-dimensional case, (2.1) can readily be solved:

s = (1 + 2e)1/2x — x, (2.2)

which reduces to s = ex for very small strain e. It is, therefore, possible that a closed

solution to (2.1) might exist. The exact solution must have appeared too laborious to

writers on the topic, for no recorded attempt at an exact solution can be found in the

literature.

Born and Voigt neglect the quadratic term in the derivatives in (2.1) and arrive at

Si = euy'. (2.3)

Expression (2.3) is substituted in the series for the energy density <j>. Born and Voigt

then conclude that, in the case of zero initial external forces, the Cauchy relations are

satisfied by the coefficient of the quadratic term in the strains.

Epstein, in 1946 (see [4]) presented a justified objection to the approximation (2.3)

used by Born. He states that (2.1) must be solved up to terms quadratic in eit to insure

derivation of the complete quadratic term in the strain series expansion for <f>. He points

out that this more delicate approximation need only be substituted in V1, the linear term

in the displacement series for <£. In the quadratic term in the displacement series, the Born

formula (2.3) may be substituted.

There can be little question as to the propriety of Epstein's observation. Unfortu-

nately, he uses an unnecessarily'complicated method to arrive at the conclusion that

the Cauchy relations are satisfied by the coefficient of the complete quadratic term in

the strain series for 4>. Then Epstein states that the "coefficients of elasticity" do not

satisfy the Cauchy relations. He considers the case where the initial external forces

are zero. In this case, Vi = 0, hence the energy is given by the term quadratic in the

displacement (F2). He then states that this term is not equal to the entire quadratic

term E2 of the strain series, and that, in addition, V2 does not satisfy the Cauchy rela-

tions.

In the case of zero initial external forces, the only case which Epstein considers, we

will show that E2 and V2 are equal and that the coefficients appearing in them are also

equal. We will also show that, from a theoretical point of view, it is much more logical

to define the coefficients of elasticity from E2 than from V2 . Epstein does not notice

that E2 and V2 are equal. As a matter of fact, he explicitly states that his entire argument

rests on the fact that they are not equal.*

To arrive at our results, we will use a method of attack different from that of the

majority of writers on the subject. This method has several advantages: it lends itself

to simpler and more rigorous treatment; it does not involve approximations to the

solution of partial differential equations; and it presents a clear tensorial outlook. The

tensorial characteristics can be recognized immediately and all invariant relationships

become apparent. These advantages are achieved by using, almost from the start, a

series for <p in terms of the strain rather than a series in terms of the displacement.

We will resort only to approximations of a physical nature, based on universally-

*This has been pointed out by Zener (Phys. Rev. 71, 323 (1947)). A somewhat more detailed analysis

is given by Per Olov Lowdin (A theoretical investigation into some -properties of ionic crystals, Upsala, 1948).

This latter pamphlet discusses the Cauchy relations in the case of finite strains and arrives at conclusions

entirely in agreement with those in Sec. 4. The pamphlet reached the United States in the fall of 1948,

after this thesis had been completed.
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recognized experimental facts. These approximations are part of all other treatments

of this subject, although the various authors have not always stated them clearly.

3. A summary of a few well-known results of the theory of elasticity for a continuum.

Let the original coordinates of a point (i.e. before deformation) be represented by a*.

The final or strained coordinates will be denoted by x\ The coordinate systems need

not be the same.

Let dsl denote the square of the unstrained distance between two neighboring points;

let ds2 denote the square of the distance between the same two points after deformation.

We then introduce the Lagrangean strain tensor eu for the deformation of a continuous

body; from its definition

ds2 — dsl = 2e,-,- da da'. (3.1)

The existence of a strain energy representing the potential energy of the deformation

has been shown by many writers, (e.g., see [1], p. 229).

Let E be the total strain energy for a continuous body. We write

E = [ <pdV,
Jy

where </> is the strain energy density and dV is an element of volume in the unstrained

coordinates.

Since the strain ecompletely determines the energy of the body, it is clear that

4> = We assume that

<P = Vo + • = Vo + &"ea + A "'hheijehk + • • • . (3.2)

Now <p is a scalar, as are <p„, <pi, <p2, etc. Hence ft" is a doubly contravariant symmetric

tensor, and a"'** is a four times contravariant tensor symmetric? in (i, j) and in (h, k).

The two groups (ij), (hk) are also interchangeable. No additional symmetry in this

tensor can be discovered by treating the body as a continuum. Hence the Cauchy rela-

tions are not satisfied.

4. The monatomic lattice. Consider a simple monatomic lattice. All the particles are

similar and have the same force law between them. We will assume, for the present, that

knowledge of the position of every particle in the body completely determines the energy

of the body. We are excluding the possibility of dipole moments attached to the particles;

in this case, the energy would also depend on the angle between the dipole vector and

some reference frame. It may seem that we are also excluding the monatomic lattice

in which the particles are considered as rigid bodies with ability to rotate. It was shown

by Born that this case reduces to the case of a multiatomic lattice (see [2], p. 556),

which we will treat in Sec. 5.

We conclude then that the total internal energy of the body depends only on the

distances between atoms. This is not equivalent to the central force assumption, where

the total energy is the sum of mutual energies between pairs of particles, this mutual

mutual energy being a function only of the distance between the two particles on which

it acts.

Let fi, v, rj, ■: • be particles of the body, the distance between the particles n

and v, E the energy function for the internal forces. It will be more convenient for our
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purposes to use — pi, as the independent variable; this is permissible since p„, is

positive.

E = E(R„, , R„ ,Rr,,, •• ■), in general. (4.1)

The case of central forces occurs when the function E can be decomposed into

E — ̂  ^ Eu»(R»,)> for central forces. (4.2)

(In (4.2) R„,, R,„ are treated as independent variables.)

Expanding (4.1) in a power series, we get

E = Ea{Rl , Rl ,•••) + £ (£f) AR„
Mi„ \crtMy/o

(4-3)

+ ^ *r~) ar^&rv( + ■ • • i
* «.►;>!.£ aK„|/o

where the summation is over all pairs of particles n, v. We may take E0 = 0 as our

datum.

Let us divide the body into regions V, V', • • • .We define the energy of V as

Ev = Z (^f) AR„ + i Z ) AR„AR,t + ■■■ . (4.4)
\oritjV/o * \o£iuv oKjjt/o*HV

in 7 in V

We notice that E ^ 52 y Ev , but that we have

E^ Y, Ev. (4.5)
all V

It is shown in the appendix that the equality sign in (4.5) becomes valid as long as each

volume V has dimensions which are large compared with the distance of appreciable

molecular interaction.

Let us now consider a continuum superposed on our monatomic lattice before

deformation. Each particle mo will have a coinciding representation /zCo on the continuum.

The continuum upon deformation will have a strain e,-,- , which is a continuous function

of the coordinates. Hence, within a small volume V (which can still contain a very large

number of representations nc), the strain is sensibly homogeneous.

For a monatomic lattice, equilibrium is achieved in the unstrained state by having

each particle a center of symmetry (the laws of force between all particles are the same).

Are we permitted to assume that, after deformation, the particles still coincide with

their representations on the deformed continuum? The only way the assumption can

fail is by causing violation of the equilibrium of individual particles after deformation.

But under the proposed assumption, each particle tx will still be a center of symmetry

after deformation (at least with respect to the nearby particles, which are the only ones

influencing the force on //). Hence, we conclude that the assumption is permissible for

a monatomic lattice, since equilibrium of all particles is maintained after deformation.

Consider a volume V whose dimensions are small macroscopically speaking, but

very large compared with the distance of appreciable molecular interaction. (From our

knowledge of the forces of interaction, such volumes exist.) The assumption of the

existence of such a volume V about each particle of the body is necessary to treat
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inhomogeneous strain (this assumption is made by all authors, although not always

stated).

Within V, eu is nearly constant. From the definition of e(j , we have

A= 2e,,a*„ai„ , if /x, v are close together (4.6)

(en is the Lagrangean strain tensor; a],, = al — a'„ , where a], are the unstrained co-

ordinates of the point n). Since V is a small volume on a macroscopic scale, (4.6) holds

for any two particles of V.

Substituting (4.6) into (4.4) we obtain

Ey ^ . ( .jrj ) OjfiyClfip -j- ^ ^ j ( nD nD ) "l- * . (4.7)
o * C/l,$/0

ii 7 in F

We are now in a position to define the strain energy density (p = limy-,a (.Ey/V). The

limit is taken macroscopically, so that the smallest volume still contains a very large

number of particles:

1
*=V Z) (jfr) 2eaaUaU + \ ) 4ei,eMo;XXf«'{ + • • •]• (4-8)

M „ \OllnV/0 A u.,v\v,£ \Ollnv Oflnf/o Ju,v\rj,l- \dRpp dRyj^J o
in F • in V

Now (4.8) is a series of the type (1.1) and we immediately pick out

A"= v LS.i Lr„v (4.9)
in V

where (d2E/dRliydRv()0 is a scalar in the unstrained coordinates. In general, A"'" will

not satisfy the Cauchy relations, since indices of the first group are not interchangeable

with indices of the second group. For instance, i and h cannot be interchanged in (4.9).

If we assume central forces, then substituting in (4.7), we get:

® - n Z EnXRur)}
2 n.v

(4.10)
t, v ' /dEjap | i j j \ ^ I d EVA i j h k I
J-J V 2-^ V/77? ) I- / j 1 ip2 J j^hk^nv^nv^fiv^nv ~I " j

fl , V \(MtCny/ 0 fl, v \(tli/HP / 0

in V in V

(for central forces)

and

a«.m =|v NlVA aiXM- • (4-11)
V h _ v \Ultfxp / 0

in V

It is apparent that the Cauchy relations are satisfied, since complete symmetry in i, j,

h, k exists.

It should be noted that no approximation to the strain tensor is made throughout

the proof. The strain tensor is introduced through its very definition. The only approxi-

mation used is one which is used by all other writers, i.e., about each internal point of

the body there exists a region whose dimensions are large compared with ranges of

atomic interaction, but in which the strain can be treated as homogeneous.
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It is also well to remark that the coordinate system used in the proof is not specified

and need not be a Cartesian system. Hence it can be concluded that (4.9) and (4.11)

are, indeed, general tensor formulas.

Having arrived at the desired results, we are now in a position to compare our work

with that of other authors on the subject. There have been so many authors who have

written on the subject that it will be impossible to discuss the investigations of all of

them. The classical proof of Cauchy's relation is well given in Born ([2], pp. 545-555).

We shall limit ourselves to a discussion of his work. In addition, we will look into the

work of Epstein as presented in his article, which was one of the impetuses for the

writing of this thesis. Since these authors restrict themselves to central forces, we will

write

Ev = Z I A+ £ (~A (AB„)' + • • • • (4.12)
Mil, £ WjlXpyl o n,v \U-tvnv /Q

in 7 in V

Equation (4.12) is equivalent to (4.4) for central forces, and yields (4.10), from which

we deduced the Cauchy relations.

To conform with the work of other authors, we introduce Cartesian coordinates y\

and the displacement st- . Distinction between covariant and contravariant components

is now immaterial.

Using Cartesian coordinates yl„ , we have

= Z (ylv + K'y)2 ~ Z (yl')2 = 2ylvSiu., + Z (s'f")2)

(4.13)

We shall use the relations

— 2y^itiv ~f~ 5 SipySj^p .

- (til2"- • <4-I4>

Urfel - 2,"(ifcl + 4«-(i:)„■
Substituting (4.13), (4.14), and (4.15) into (4.12), we get

in V °Vin V ^*' °V" (4.16)

= v1 + V2 + • ■ ■ ,

where summation is over all repeated indices, regardless of position. Equation (4.16)

is exactly the formula used as a starting point by Born and Epstein.

Now, Born and Epstein both start from (4.16) and try to reach (4.10). Born is un-

able to do this correctly since he does not use the correct expression for s1(1I, in terms

of e,,- .

Born substitutes in (4.16) the linear approximation silt„ = e^yl, :

Ey^lZ (^f) yUa + 7 Z (tTTt) eikeikylyl + • • • . (4.17)
1 .*•' XdyJ° 4 »■> dy'J0

in V ID V
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Using (4.14) and (4.15), he arrives at

Ey — 2 5 {diC),2^"6'' + 4 5 {dR^)

I 1 I ^ B Uy \ A i j k h I

-f" \c^jR2 / yvvijnv^ufiih ~f"

(4.18)

in V

By comparing (4.18) with (4.10), we see that Born's first order term is correct, but that

his expression for the second order term is incorrect by a factor

W = \ Z 25i,(|V)eikeihyl„yl (4.19)
in V

(see [2], p. 547, eqs. (31) and (32)).

Notice that (4.19) does not satisfy the Cauchy relations from a tensorial point of

view. How then is Born able to deduce the Cauchy relations? He notices that, if the

initial external forces are zero, then E" = 0. Born actually never states explicitly that

E2 = 0, when the initial external forces are zero, but he uses this result repeatedly to

simplify his equations. Kellerman, a student of Born, does make the explicit statement

that E2 = 0 and attributes it to Born (see [8], p. 534, note). In this case expression

(4.18) reduces to the correct expression (4.10) up to terms of the second order (terms

of higher order will always be incorrect). This is really a very fortunate coincidence,

since it led Born to the correct conclusion.

In the case of initial external forces different from zero, Born would have arrived at

the incorrect conclusion that a"'m did not satisfy the Cauchy relations. Expressions

(4.10) and (4.11) show that the Cauchy relations are satisfied even though the initial

external forces be different from zero.

Let us now examine the work of Epstein. He considers only homogeneous strain for

a monatomic crystalline substance (although he does not state this explicitly). He starts

from (4.16), which he first rewrites in an unnecessarily complicated manner. He in-

tegrates approximately the partial differential equations connecting the strain and the

displacements (1.9). His final formula for s,„„ is:

== fliVnv hflkfikVnv ) (4.20)

(see [4], eq. (14)) where fa = en + co,-# and &>,-,• is the rotation

_ 1 /ds,„„ _ dsi(lv\

^ 2 Vaj,;, dy'J-

(Born uses

s.m, = euyl, .) (4.21)

Within the volume V, it is clear that e,-,- , cjif are constant. He then substitutes (4.20)

into Vi in (4.16). In V2 (the term quadratic in the displacements) he substitutes s,„, =

fnyl> , as Born does.
Upon substitution of (4.20) into Vi we will get a term linear in eu , call it V[, and a

term quadratic in e,,- , call it V". Epstein considers V" + V2 (which is the whole term
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quadratic in etj, and which we have previously called ip2 (energy density) or E2 (energy)).

He sets the coefficient of the expansion of V with respect to the powers and products of

con equal to zero. He then arrives at a number of rather complicated relations between

the coefficients, which he uses to simplify the terms involving only e,-,- . He then con-

cludes, after this laborious task, that the coefficients of [V" + V2] (=E2) satisfy rela-

tions of the Cauchy type. This we have proved in a simpler and more straightforward

way.

He restricts himself to the case of zero initial external forces, and shows that Vx = 0,

hence that E — V2 + • • • . If we neglect higher order terms, we have E = V2. (Vx = 0

since

. V au'Jody:

is the ith component of the initial force on the particle y. = 0.)

He then has two quadratic forms in e4l- at his disposal:

(a) V" + V2 , which satisfies the Cauchy relations (= E2), and

(b) V2 , which is the energy.

He now claims that the coefficients of elasticity appear in F2 and not in V" + V2 ,

hence that the coefficients of elasticity do not satisfy the Cauchy relations. Actually

the coefficients of elasticity (for the case of zero initial external forces) appear both in

V'i + V2 and in V2 , since it is easy to show that V" = 0.

We have that

0 = Wen + A"+ ••• .

Since the original state is stable, it is clear that S2" = 0 for the case of zero external

forces. This can be shown in another way, using a formula which Epstein takes as a

basis for his argument:

t" = p- = 0" + 2Ai''hkehk + • • • . (4.22)
oe,;

If the original external forces are zero, then the initial stress is certainly zero; hence

S2" =0. Consequently

0 = 4>z 4" • • • or E — E2 -(-•••.

Limiting ourselves to terms of the second order in eit- , we have that

E = E2 = Vi' + V2 . (4.23)

But we also have that E = V2 . The only possible conclusion then is that V" = 0.

Formula (4.22) shows clearly that if any terminological distinction is to be made be-

tween the coefficients in E2 and V2 , the coefficients of E2 = V[' -f- V2 , and not the

coefficients of V2 , must be called the coefficients of elasticity. In any event, the co-

efficients are equal and E2 = V" + V2, represents the energy just as well as V2 .

The fact that V" = 0 has been conclusively proven by Poincare and Born (e.g. see

[3], p. 45). It might be illuminating actually to substitute (4.20) and (4.21) in their

respective positions into (4.16) and see that Epstein's formula for the energy is indeed

correct (of course only up to second order terms, which is all he claims). Actually,

Epstein goes about this in a more complicated way but with no apparent advantage.
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We have upon substitution:

Br -1 £ {ff) f,d. - \ z (ff)
* Mi* Xdy^o * m.f NoyM/o

in V in F

+ Z (tttt) fufmiylyZ + ■

(4.24)

in V

Using (4.14) and (4.15), (4.24) becomes

or

Ev 2 5 Gd2^'2^"" 4 5 (dff'J02y"'y^'flkfit
in V in V

+ 4 5 (4'25)
in V

+ | Z + •••
in V

Ey = 2 ^

in V

(4.26)

Setting all the coefficients of terms involving «;,• in this equation equal to 0, we get

(4.10) up to second order terms:

Ey = \ Z (^) 2^ H,v \Uy£l>nv'0

(4-27)

+ | Z + • • • »
in F

.Ey = Ei + £J2 + ■ ■ • •

The quantity E2 Epstein calls V" + V2 because, in his derivation, E2 stems partly

from V1 and partly from V2 . This has no theoretical significance. We can derive (see

derivation (4.12) to (4.16)) the series in the displacements from the series in terms of

the strain and find that Ei yields F, and part of V2 ■ These statements are in no way

contradictory. In any case, Ev = E2 = V" -}- V2 = V2 (see (4.23)), where the initial

external forces are zero. We have the expression for Y" in (4.25):

F!' - -1V. (sfel2^'* • (4-28)
M • *

in V
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The crux of Epstein's argument is that V" ^ 0 (see [4], p. 919); he states that the only-

difference with Voigt is a term

v (d1^) r<y
ti \dRj0LW"

f + (yl)2]. (4.29)

Epstein also says that this expression does not, in general, vanish. Yet it was proven

by Poincare ([3], p. 45) and by us that V" = 0. Hence (see (4.28)), we have:

Z (#=) 2yUvU = 0 (4.30)
y., v v' 0

in V

(zero initial external forces). This also proves (4.19) used by Born. Hence certainly

(4.29) = 0, and the entire argument of Epstein breaks down.

We have Ev = E2( = V[' + V2), and the coefficients of E2 are the coefficients of

elasticity and satisfy the Cauchy relations.

5. The multiatomic case. Let us consider a multiatomic, crystalline, elastic body.

It can be thought of as a superposition of many simple monatomic lattices. The body

can also be represented as the repetition of some fundamental cell (containing all the

different types of particles!).

It has been shown by Born ([2], [6]) that, if the laws of force between the particles

of different simple lattices are not the same, it is impossible to consider the body as

strained in the same manner as a continuum. He shows that this latter assumption would

lead to a violation of the equilibrium of the particles (see also Love [7], note B, pp.

620-627).
We can make a very reasonable assumption as to the state of deformation of the

body without violating the equilibrium conditions and without abandoning the concept

of strain as defined for a continuum. Each individual monatomic lattice is strained as

a continuum, in the manner described in Sec. 4. In addition, each simple lattice is dis-

placed with respect to the others.

Let en be the strain of all lattices. Let us picture a frame of reference consisting of a

continuum C, superimposed on the molecular body, and let this continuum be subject

to the strain e,-,- experienced by each of the monatomic lattices. Every particle ju of the

body will have an initially coinciding representation on C. The representation of

each particle on C will be displaced under the strain e,-,- by an amount . The final

position of the representation fxc of a particle will not, in general, coincide with the actual

final position of the particle n, since each lattice is undergoing an additional displace-

ment with respect to the continuum.

Let the displacement between the deformed positions of a particle and its repre-

sentation on the continuum be u„ . In a region which is small on a macroscopic scale,

u„ will be the same for all particles m belonging to the same monatomic lattice. If our

body consists of n different lattices, the deformation is completely specified by the 3n + 6

local constants

^(1 )*' J ^(2)t J ' ' ' j ^(m)i J J ^(n)» t &ii •

We recall that the u(m)i were introduced to insure preservation of equilibrium. We

expect the imposition of the equilibrium conditions to yield u(m)i as a function of the

local strain eu .
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In any event, let us start our development as in Sec. 4 and notice the differences as

we go along. For a monatomic lattice we expected an energy density of type (1.1),

which was easily predictable. For a multiatomic body, we expect the energy function

to depend at first on e, umi , • • • , u(n)i . We write tentatively

<*> = 4»o + 0"e„ + Kii-hleiiehk + • ■ •

I ^ * 'A(m)^(m)< I H (m) (m' (m) iU(m') j ! * *

+ E T\ m) m) +

(5.1)

We have that

-
d<j>

du
*-1 =o,
(m) » JO

to satisfy the original equilibrium. For final equilibrium, we must have d<f>/du(m) { = 0'

which leads to:

2 -^(m) "f" T(m) 6hk = 0. (5-2)
(to' )

We have 3n linear equations in the 3n unknowns u(m)i . These equations are not inde-

pendent, but still admit of a solution (see Born [2], p. 552). The solution will yield

«(„),■ as a linear function of all the strain components. We expect that

^(m)t ^ (m) i@hk • (^*3)

Substituting in (5.2) leads to

22
(to

Using (5.4) we simplify (5.1) to give

2 £ + T\km;ehk = 0. (5.4)
(m')

Ot i i » t j , n/c i
en + A e,-A* + ' * *

^ H(in) (to' )T(m') j^hkfilp I
(to) , (m')

(5.5)

The terms appearing in (5.5) will be evaluated a little later on. We will notice then that

A'''hk satisfy the Cauchy relations under the assumption of central forces. We will also

observe that the first line in (5.5) is identical with the energy density based on an assump-

tion of continuous strain.

The complete coefficient of the quadratic term in e,-,- will satisfy the Cauchy relations

if, and only if,

BhkJv = E jVi'ji (5-6)
(to) , (to')

satisfies the Cauchy relations.

We recall that the Cauchy relations held in the monatomic case because A"'hk

could be written as

A"." = £ A^al.a'^a^al, = scalar). (5.7)
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It is clear that the simplest tensor of the fourth rank satisfying the Cauchy relations is

xii,hk = v'v'vV (5.8)

where v* is an arbitrary contravariant vector.

Let us try to make the most optimistic assumptions possible in order to obtain the

Cauchy relations. Let us assume the form of most likely to yield a Bkk,lv satisfying

the Cauchy relations. Clearly the most favorable assumption is

T(m)i = (5.9)

where t\m) is a vector depending on m, i.e. different for different m. (Notice that 7r\km)i is

a quantity related to the with lattice, and must be assumed different for different m.)

Let us assume for simplicity that

J (5.10)

then

B = (5.11)
(to) Am')

In addition let us assume that the summation over (i, j) can be performed, to yield

Bhk,tv = (constant) £ . (5.12)
(m) Am')

By inspection of (5.12) we see that the Cauchy relations are not satisfied as soon as we

have two or more types of particles. For, let us write

Biv.u _ (constant) ^ #„)<?„)<(*'><(«»'> • (5.13)
<m) , (m')

Then comparing (5.12) with (5.13) we see that the coefficients are not equal since

t\m> 9^ t\m-j at least for some values of (m), (mr). Hence the Cauchy relations must

fail for a multiatomic body even though subject to central forces.

It may be of interest to develop in detail the expression for <j> in the case of a multi-

atomic body, thereby verifying, step-by-step, the argument given previously in general

terms. We then can compare our series for <t> (or E) with the one used by Born. We will

arrive at the conclusion that the series used by Born is incorrect in the part involving

the strain terms exclusively, but correct in the terms in uiim) and the mixed terms in

(to)@hk •

We will limit ourselves to the case of central forces, and we start with formula (4.4),

rewritten for central forces:

= &) + J £ (AKJ2 + • •" • (5.14)
£ H I y xUlLVl^y/ 0 ^ H,V XU'iL^JI / 0

in V in V

Unfortunately we cannot write, as we did before,

= 2eiiatllta'liV . (5.15)

Formula (5.15) holds only if n, v belong to the same monatomic lattice. If and v belong

to different lattices, then, in addition to the strain eu , we must take into account the

difference in the additional displacements and u, .
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Let s„ be the actual displacement of the particle p.. Let s„c be the displacement of

the representation of p. on the continuum C. Then

s„ = s„c + u„ , (5.16)

and

V = s„cVc + u„r , where u„, = u, — u„ . (5.17)

Let R„oVa = pI„,„ , where pMo„0 is the initial distance between p. and v;

= pIc„ , where p„oFc is the strained distance between the representations of

p. and v on the continuum C; and

R», — pIp where p„„ is the deformed distance between p. and v.

The following diagram may clarify the situation.

We have

ARpv Ryv RfioPo f R/1P RflcPe R^cPp RfloPa 1

whence

RpcPe R,... (ARpp)c • (5.18)

Clearly

Rny — R*„. = 2(ylc,c)(u„„) + Z) Ov,)2, (5.19)
t

where we are now using Cartesian coordinates.

Consequently,

A = (A /?„„)<. + + 2 (yl, + (5.20)

(since Cartesian coordinates are used, s* = sf , etc.), or

ARfiv nvVtxv "I- ^ 'lAppiUpyj "I- 2yliVuliVi "I- 2slieVeulliri . (5.21)
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Substituting in (5.16), we obtain

Ev = I £ (id2e,<"'+ i S + • • •

i 1 (dE^ 0 1 /dEp9\ ij . 1 ^ /d2Ellv\ . t-
o \rJT? / vi 9 2-J 1/7P / ^nvi^nyj ~f~ a 1 Jn2 J iivVnv^nvnvi
^ n,v \uii/np/o ^ n,v \U/ixljV/ o jt Mi„ \tiibny /o

in F in V in V

_l A V dEjJ\ i j- i
~f" ^ j^^vkVfivUnvVi

in' V

+ 5 z &)

(5.22)

+ •••

+

In (5.22) we have included all terms up to and including second order terms in en and u„ti.

The first line of (5.22) has the familiar appearance of the strain energy encountered

in Sec. 4 (see (4.10)). It represents the energy resulting from the deformation of all the

lattices, excluding the energy due to the displacements of the lattices with respect to

each other. Using an obvious extension of the terminology already introduced, we will

call the energy terms in the first line of (5.22) by Ec .

Examining the other terms appearing in (5.22), we first notice, by investigating the

condition for equilibrium, that

£ (#*) y>^ = °- (5-23)
in V

We are next interested in the cross-terms involving e,. The only direct term of

this type appears on the third line of (5.22). A veiled term of this type, however, appears

in the fourth line, which includes all cross-terms in s\cVcullui . We know that =

and since we are interested only in the term linear in e,-,- , we can safely substitute

^ QkiVuv

We are now in a position to write an expression equivalent to (5.1). We have not

yet written u„yi in terms of uim)i , but this is only a simple algebraic step. We have

* = y

1 x ^ | dEu|i\ $ j | 1 x | d Euv\ a i j h k
9 1 JD / ^* iUV-vVM" A L—S wp2 / ^ijChkU\i.vVnvVnvVnv
^ fj, v o ^ n, p sl^-Cvfip / 0

in V in V

+1 s
in V

+ 5 [«■©. +

+

UnpiMftpj I *

ijiifjpk ~i~

in V

(5.24)
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By using relations (4.14), (4.15), we rewrite (5.24) as:

f 1

<t> = 4>c + ~y

yiU^j +
1 f d E„v \7 £ (77T7) u"'

I 1 V / ^ \ I I
+ o ^(, .• , i )y^au^k +

w2/|l» dy»v'o

(5.25)

We can arrive at (5.24) or (5.25) in a somewhat easier way by using the results for

a monatomic body, and starting from a series in terms of the displacements:

+ +15 + ''' • (5-26)
in V in V

With E0 = 0, and s„ = sMe + u„ ,

Z (fr) *>.>.< + I £ + • ■ •z _M,r Xdy^/o ^ \dy^ dy»J0

+ 2
1 (dEjtr\ I 1 I
9 ^ ( a « J w"'* 4 " ( a » nil U!"iUi"' "t~

in K in K

+ I £ 2( t ) Sf'ciUn'i + • • • ■
4 _m.» Xdy^ dy„Jo

(5.27)

Now (5.27) is equivalent to Born's series (see [2], p. 547, eq. (31)).

We notice that the first line of (5.27) is exactly of the type found in the monatomic

case and is equivalent to what we have called 4>c = Ec/V. In the third line of (5.27),

we are allowed to substitute

£Hcvei ^iiVnv •

We notice that

(dE,

M i v

in V

f Wji»t = 0dy'J o

and that (5.27) therefore becomes (5.25).

Born substitutes = e^yl, throughout (5.27); actually this substitution is only

permissible in the third line of (5.27). Hence Born arrives at an incorrect expression

for Er and 4>c , but, since his error is localized in <f>e , he is still able to deduce correctly

the equations equivalent to (5.2) through (5.6), which are the salient equations of the

multiatomic case.
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APPENDIX

We have written the total strain energy of a molecular body as

E = £ (~) + I E L/lo ) +
H,v wil/MF/0 ^ M.viiJ,? \Ottnp

= Ei + E2 + • • • >

where 2m.» means a summation over all pairs of particles ju, j>.

We then defined the strain energy of a volume V as:

Ev = E (#") + Z L/fff ) + ■
H,v \OJXlxv/0 n,v;ij,£ \Oltnp UltriS' 0

(A.l)

(A.2)

= EVl + Ev,

If the body is divided into two parts V and V', we notice that

Ev + Ev ^ E. (A.3)

The reason for this inequality is physically clear. We have omitted the surface energy,

i.e. the energy between the volumes V and V'. This energy is denoted by Evv, . It is

our contention that Evv■ is negligible compared with Ev and Ev■ if the volumes V, V are

large compared with the sphere of molecular activity. Then the inequality (A.3) would

become an equality:

Ev + Er- = E. (A.4)

We will first show that Evi + En = Et , the arguments for higher order terms running

similarly. We have exactly:

Ev i + Ev I- + Eviv i' — Ei . (A.5)

We notice that Evi.vi consists of a summation over pairs of particles, one of which

is situated in V, the other in V'. The only pairs of particles, which will contribute appre-

ciably to this summation, are those within an extremely narrow zone about the boundary

of V and V. The volume of this zone is of the order of the product of boundary surface

multiplied by the range of appreciable molecular activity. This volume is therefore

very small compared with either V or V. Hence, it is permissible to write EVI + Ev,x =

Ei . The reasoning for E2 , etc. • • • is similar, and:

Ev "1~ Ev = E.

If the body is split in more than two parts, we will still have

E Ey = E.
V, V ,V" ,•••

The above argument is given in great detail by Poincare ([3], pp. 40-53), and we have

done little more than reproduce his exposition. (Note that long-range forces are not

included in this treatment).
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