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1. Introduction. In a recent paper1 Alexander Weinstein reconsidered axially sym-

metric potential flows of an ideal, incompressible fluid and in particular discussed the

flow generated by various axially symmetric distributions of sources. Weinstein based

his analysis on the classical2 representation of the corresponding velocity potentials and

stream functions in terms of improper integrals involving Bessel functions. In the present

paper, which was suggested by and is complementary to Weinstein's work, the potentials,

stream functions, and velocity components for basic axially symmetric distributions of

sources or vorticity over the circumference or the interior of a circle, are established in

terms of elliptic integrals of the first and second kind.

The relative merit of the alternative representation used here appears to be twofold.

First, the approach via elliptic integrals yields an analytically more transparent de-

scription than that afforded by the representation through discontinuous integrals of

Bessel functions. In particular, further insight is gained into the cyclic character of

Stoke's stream function or the velocity potential in cases where the distribution of singu-

larities is such as to give rise to a multiply connected domain of regularity in the me-

ridional half-plane. The results here referred to are of course in complete agreement

with those of Weinstein who originally clarified this aspect in connection with the stream

function for the source ring. Secondly, the use of functions which have been tabulated

exhaustively facilitates the physical interpretation of the results and renders possible

the complete determination of the corresponding streamline patterns. By superposition

of the foregoing basic axially symmetric flows and appropriately chosen uniform streams

one may obtain a variety of technically significant flows around solid and annular shaped

bodies and half-bodies of revolution. A comprehensive study of the various body shapes

and associated streamline patterns so obtainable is currently in progress in cooperation

with V. L. Streeter and P. C. Chu, of Illinois Institute of Technology, who have inde-

pendently completed by aid of numerical integrations several flow patterns based on

the homogeneous source disc.

It should be recalled at this place that, historically, elliptic integrals were introduced

early in connection with problems of rotational symmetry in potential theory. Thus

the simple formula for the velocity potential of a homogeneous source ring appears in

classical treatises as the gravitational potential of a homogeneous circumference, and

the electro-magnetic analogue of the stream function for the vortex ring was given by

* Received Feb. 17, 1949.

'Alexander Weinstein, On axially symmetric flows, Quart, of Applied Math. 4, 429-444, 1948.
2E. Beltrami, Opere Matematiche, Vol. 3, U. Hoepli, Milano, 1911.
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Maxwell3 in terms of the complete integrals of the first and second kind. It appears,

however, that the complete integral of the third kind and its relation to the incomplete

integral of the second kind and Jacobian elliptic functions, have been neglected in the

problems under consideration. In this connection it is interesting to note that G. M.

Minchin4 obtained an expression involving integrals of the third kind for what corre-

sponds to the velocity potential of the vortex ring, but failing to apply the foregoing

reductions, gives preference to the open representation in terms of a series of spherical

harmonics.

Finally, the authors understand that A. Van Tuyl, of the Naval Ordinance Labo-

ratory, by formal transformation of the corresponding Bessel integrals has recently

reached results which partly overlap with those given here.

2. The governing equations. For the sake of convenience we cite here the basic

equations governing the steady irrotational flow of an ideal incompressible fluid in the

presence of axial symmetry. Referring the motion to the cylindrical coordinates (x, p, d)

where the rc-axis is assumed coincident with the axis of symmetry, there exists a velocity

potential (j>(x, p) which satisfies Laplace's equation

*v2)+5('2)-# «">
at all non-singular points of the field. Equation (2.1) may be considered as the condition

of integrability assuring the existence of Stokes' stream function ip(x, p) as defined by

dx p dp' dp p dx ^ ^

Choosing the additive constant in \j/{x, p) such that

iA(—00 > o) = o

we can represent \p(x, p) by the line integral

Hx> p) = L„,0) [~p Yp dx + p fx dp] (2-3)

The choice of the path of integration is immaterial in simply connected fields.

From (2.2) follows

The axial and radial velocity components are then given by

„ = ^ = 1^ = C2_5)
dx p dp' "dp p dx

The curves \p(x, p) = constant are the streamlines in the meridional half-plane and

27r(^2 — \pi) constitutes the total flow between the streamsurfaces generated by \j/ — \p2,

xp = \px .

As was emphasized by Weinstein and is apparent from the definition (2.3), a given

3J. C. Maxwell, Electricity and magnetism, Clarendon Press, Oxford, 1892, p. 339.

4G. M. Minchin, The magnetic field of a circular current, Phil. Mag., 35, 354-365, 1893.
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velocity potential p) whose derivatives are single-valued guarantees the single-

valuedness of the associated stream function *p{x, p) if the domain of regularity in the

half-plane p > 0 is simply connected. This condition, however, is in general not satisfied

for source distributions off the axis of symmetry.

iso-modulor circle
const.

Fig. 1: Position Parameters

3. Velocity potential and velocity components of the source ring. Consider a homo-

geneous distribution of sources of total strength m (total flux 4tm) along the circle

x = 0, p = b. The distance R from a point P{x, p, 0) of the field to a point Q(0, b, 6) on
the source ring is

R = (x2 + b2 + p2 - 2bp cos e)w2 (3.1)

in which

= r,(l - k2 sin2 <p)1/2 (3.2)

* = ^ (3"3)

k2 = *¥ = 1 - 3 (3.4)
n rx

rl = x2 + (p + b)2

rl = x2 + (p - 6)2
(3.5)

so that Ti , r2 denote the distances B'P and BP respectively in Fig. 1.
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The velocity potential at P is given by

^'") = -£/0 f (3-6)

To rationalize R, we introduce u by means of

sin <p = sn (u, k)

- K < u < K (3.7)
cos <p = cn (u, k)

which gives

R = r, dn (u, k), ^ = (3.8)

and thus

rK

7iTj J _K nTi

where K denotes the complete elliptic integral of the first kind for the modulus k. Pro-

ceeding to the limit as k —» 0, we confirm that along the rr-axis

<Kx, p) = [ du = (3.9)
rr1 J_K ht.

0(x> 0) = — (3.10)
r o

where,

r0 = n(atp = 0) = r2(atP = 0) = (x2 + b2)u2 (3.11)

The components of the velocity field generated by the potential (3.9) are obtained

from (2.5) by aid of the identity5

f - est iE - Ki <312>
Here k' is the complementary modulus,

k' = (1 - k2)1/2 = * (3.13)
r

and E stands for the complete elliptic integral of the second kind referred to the modulus

k. The computation yields

, , 2 mx „

and, in particular,

p - i - b E
irpr1 \ r2 )

(3.14)

vx(x, 0) = vp(x, 0) = 0 (3.15)
'0

Tor this and subsequent identities associated with elliptic functions and integrals, see for example

E. T. Whittaker and G. N. Watson, Modern analysis, 4th ed., University Press, Cambridge, 1935, Ch.

XXII.
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The behavior of 0, vx , v„ in the vicinity of the source ring, i.e., in the neighborhood of

the singular point 5(0, b), is characterized by the following limits as r2 and hence k'

tend to zero:

, , m , 4n , m sin 7 n m cos y n fn ,
4> + —r log > 0, vx-\ 7—~ —* 0, V„ 7- > 0. (3.16)

tt b r2 irbr2 irbr2

Here y denotes the polar angle at B (Fig. 1). Thus,

sin 7 = —-, cos 7 =   -, 7r < 7 < x (3.17)
r2 r2

4. Stream function of the source ring. The stream function associated with the

velocity potential (3.9) may be determined directly by virtue of its intrinsic hydro-

dynamic significance. Recalling that p) — ip(x, 0)] represents the total flow

through the circle of radius p centered on the x-axis and lying in a plane perpendicular

to the axis, we have within an unessential additive constant

Hx, p) — |jj; ps M dn dd (4.1)

where

r = (x2 + M2 + b2 - 2nb cos 0)1/2 (4.2)

denotes the distance of the point 5(0, b) in the plane 0 = 0 from the point Q(x, n, 6).

The surface integral in (4.1) is the solid angle O subtended at B(0, b) by the foregoing

circle whose trace in the meridional half-plane is P(x, p). We write,

Hx, p) = ^ 0(0, b; x, p) (4.3)

It is, however, more expedient to determine \f/(x, p) from (2.5) and (3.6). Accordingly,

d\p d(f> m f bp cos 6 — p2
dx ^ dp

- 2 f b' COSJ ~ " to (4.4)
7T J o tt

so that

= \p(x, p) - \p(0, p) = — f f hp C°S f — dd dx (4.5)
TT J 0 * 0

Performing the elementary integration with respect to x,

m r (bp cos 6 — p2)x
W = ~ \ /t2 , 2 oi, asD dd (4.6)

tt Jo + p — 2bp cos d)R

and using the transformations (3.3), (3.7),

— 2mxp fK , 4rnbxpib — p) fK sn2 («, k) du ,.

* ~ x(p + 6)r, Jo + 7^,(6 + p) Jo (6 + p)2 - k2r? sn2 (u, k) (4"7)

With a view toward transforming the last integral in (4.7) into the standard form of

the elliptic integral of the third kind, we introduce the complex parameter a through

sn (a, k) = pr+ b, cn (a, k) = dn(a, k) = (4-8)
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and reach

a , —2m
Axp =  ~ K + ^ n(K, a)] (4.9)

_(p + b)r, 2 '

where

\ fK k2sna cna dna sn2 u ,
n(K' a) " J„ 1-k'snWa d" (4'10)

is the standard form of the complete elliptic integral of the third kind.

From (4.8), sn (a, k) > 1 which characterizes the integral as being of circular type

according to Legendre's classification. Here an explicitly real representation in terms of

a real parameter e is obtained by putting

(4. II)6

a = K + it

- 2K' < e < 2K'

The integral (4.10) can now be expressed as follows:

n(K, a) = n(K, K + it)

= KZ(K + it, k) + niri (4.12)

= KE(K + it, k) - (K + it)E + rm

valid within the open ranges

(2n - 1)K' < e < (2» + 1)K' (4.13)

in which n denotes an integer. For the values

£ = (2n + 1)K' we have n(K, a) = 0 (4.14)

Z(a, k) and E(a, k) stand for Jacobi's Zeta function and the incomplete elliptic integral

of the second kind of the argument a. By addition theorems and Jacobi's imaginary

transformation for sn u, cn u, dn u, E(tt) as well as Legendre's relation

KE' + EK' - KK' = | (4.15)

equations (4.8) to (4.13) lead to

i{x, P) = — Ur-K - A(e, k')
7T L '1

(4.16)

with

*f, L-/\ - TTT_1_ i'T? - ITu — 1Z7.1* L-'\ -X.

2K
A(e, k') = KE(e, k') + (E - K)e = KZ(*, k') + ^7 (4.17)

and

sn (e, k') = cn (e, k') = !L^, dn(e, k') = (4.18)

6K' and E' designate the complete elliptic integrals of the first and second kind respectively for the

modulus k'.
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The appearance of n in (4.12) and its disappearance from (4.16) and (4.17) is ex-

plained as follows: The integral (4.10), having as path of integration the straight line

segment (0, K), is single-valued in the neighborhood of x = 0, p = b. The quantity a

has the form given in (4.11), a = K + it, where e increases by 4K' in a circuit around

(0, b), and II(K, K + it) is periodic in t with the period 2K'. On the other hand,

KZ(K + it, k) is infinitely many-valued around (0, b). Now, in the relations (4.12), n

has to appear to produce single-valued right-hand members, the left-hand member being

single-valued. However, since \p varies continuously in a circuit around (0, b), it is

correct to replace n (K, a) in the process of computation of \p by KZ(a, k) plus a single

additive constant for the entire range — 2K' < t < 2K'. That is what has been done

to obtain the results as expressed by (4.16) and (4.17) from which n has disappeared.7

5. Discussion. Comparing (4.18) and (3.17), we note that

y = am(t, k')

™ , r\ r dt (5-1)
« — F(y, k ) — (1 _ (kygin2 ty/2

where F(y, k') is the incomplete elliptic integral of the first kind. The functions k'(x, p)

defined by (3.13), (3.5) and t{x, p) given by (4.18) or equivalently by (3.17) and (5.1)

may be regarded as curvilinear coordinates in the half-plane p > 0. The coordinate

lines k' = constant (k = constant) are the "iso-modular" circles

(!)' + [? - HKT - i? (5-2)
As any iso-modular circle is traversed in a counterclockwise sense, e increases by 4K'.

In view of (5.1),

e = 0 for 7 = 0

e = ±K' for y = ±|

€ = ±2K' for y = i7r

lim e = y

(5.3)

so that e tends toward the polar angle y as P(x, p) —> B(0, b) (see Fig. 1).

The auxiliary function A(e, k'), defined by (4.15), is of basic significance for what

follows. A(«, k') is multiple valued for — <» < e < co. For a closed path encircling B

once we obtain for the circulation of A

A(e + 4K', k') - A(e, k') = 2tt (5.4)

Here we face the alternative of either admitting a many-valued A and permitting a

circulation, or of cutting the semi-plane along x = 0 0 < p < fr so that A becomes

single-valued but discontinuous along the cut. The ranges for e and y as previously

announced by (4.11) and (3.17) correspond to such a cut.

'The arbitrary additive constant was chosen consistent with p) = —m for p > b.
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The local behavior of A in the vicinity of point B is characterized by

lim A(«, k') = 7 (5.5)
k'—»0

Confining the discussion to the range —2K' < t < 2K', we record the values:

x > 0, p = 0

x < 0, p = 0

- *(£ - 0
= + ')

(5.6)
x — +0, p < b A = —ir

x = —0, p < b A — 7r

x = 0, p > b A = 0

Equations (5.6) reveal the discontinuity of A along x = 0, 0 < p < 6 in presence of a

cut.

It follows from (5.5) and (5.6) that in absence of a cut the stream function \p(x, p),

given by (4.16), is also a multiple valued function whose circulation is twice the total

strength m of the source ring.

*(e + 4K' k') - iK«, k') = 2m (5.7)

Again, for the cut domain, — 2K' < t < 2K', we find in further agreement with Wein-

stein8

— 2m for x > 0

i(x, 0) =

for x < 0

for p < b

•
for p < b

for p > b

(5.8)

Observing

lim ^ = m(- — l) (5.9)
ra-»0 '

we recognize the local significance of \p in the neighborhood of P as essentially that of

the polar angle y.

As pointed out earlier, the multiple-valued or, alternatively, discontinuous character

of \p(x, p) was to be anticipated in the presence of a multiply connected domain of regu-

larity of <£(x, p) whose boundary here consists of the x-axis and the point 5(0, b). It

should be pointed out that the cyclic nature of the stream function is also immediately

evident from the solid angle interpretation underlying (4.3).

loc. cit.
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04.0

Figure 2 shows the streamline pattern of the source ring, i.e., the curves *p(x, p) —

constant, for the quadrant x < 0, p > 0 of the meridional half-plane. The curves given

correspond to equal increments in i/\ The diagram also shows the locus v„(x, p) = 0. \

6. Results for the source disc. We consider next a homogeneous distribution of

sources of total strength m over the circular region x = 0, 0 < p < b. The determination

of the velocity potential <t>(x, p) and of the associated stream function tp(x, p) may be

achieved by integration with respect to b of the corresponding functions for the source

ring. We cite directly the results obtained.
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«(*, P> — fp K - r,E - za]

♦(*, 0) - T—rTT~I X I + r0

— 4m _
0 —> 7 as 7*2 —* 0

TTU

/ \ —2m
».(®, P) - feK + A]

w»(as, 0) = , —rr for x ^ 0
r0(r0 + | x |)

Oi»M

fx(±0, p) = ±~^2 for p < b

vx(0, p) = 0 for p > &

— 2my n
»x —> —12 as r2 —* 0

7TO

»p(«> p) = zia
^p+b;+p2K-Ei

p L n J

vp(x, 0) = 0

as r, —» 0

«*, P)-J [ariE - + 26') K + (h3 — ,>

— 2m for a: > 0

0 for x < 0

iKz, 0) =

lK+0, p) = m(^2 — 2j for p < b

*(-0, p) = for P < 6

^(0, p) = — m for p > b

\f/ —> —m as r2 —» 0
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In agreement with Weinstein, we note that Stoke's stream function is single valued

in the simply connected domain of definition whose boundary consists of the entire

x-axis and of the cut along the segment x = 0, 0 < p < b. Moreover, <t>, vt , v„, and ^

are single-valued throughout the foregoing region which corresponds to 0 < k' < 1,

— 2K' < e < 2K'. We observe that vx is constant over each one of the two faces of the

disc and that

».(+0, p) - ».(—0, p) = |r = a, 0 < p < b (6.5)

where a is the flux per unit area of the source disc. The velocity component v„ , on the

other hand, has no discontinuity as we pass from one face of the disc to the other, but

has a logarithmic singularity at point B, i.e., at the edge of the disc. These results are

in agreement with the general theory of source sheets.

The solution corresponding to a homogeneous source distribution over an annular

region bounded by two concentric circles is of course at once obtainable from the results

just given by application of the principle of superposition.

7. The vortex ring. We now turn to the flow generated by a vortex filament of cir-

culation T along the circle x = 0, p = b. According to a theorem of vortex theory,9 the

velocity potential at any point of the space due to a single closed vortex filament is

proportional to the solid angle which it subtends at that point. Thus for the case under

consideration, using the notation introduced in (4.3),

4>(x, p) = p; 0, b) (7.1)

Comparing (4.3) and (7.1), we note a reciprocal relationship between the stream function

of the source ring and the potential of the vortex ring. By virtue of (7.1), (4.3) and.

(4.16), the explicit formula for <j>(x, p) is immediate.

Alternatively, we recall10 that the flow corresponding to a closed vortex filament is

identical with that induced by a uniform distribution of doublets over any surface

bounded by it. The axes of the doublets are assumed to be everywhere perpendicular to

the surface, and the surface density (strength per unit area) of the doublet sheet is equal

to Y/Att, where T is the circulation of the vortex. The solution for the vortex ring there-

fore coincides with that for a homogeneous doublet disc, which in turn is obtainable by

differentiating with respect to x the solution for the uniform source disc given in the

preceding section. Thus,

4> (Vortex Ring) = ^ ^ 0 (Source disc) (7.1)

etc.

Carrying out the required differentiations, we reach:

"See, for example, H. Lamb, Hydrodynamics, 5th ed., University Press, Cambridge, 1924, p. 195.

10See H. Lamb, loc. tit., p. 195.
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rfeK + Al*(*, P) 2t

<t>(x, 0) = t|- ^1 — "~r~^ as x > 0 or x < 0

0(±O, p) = for p < b

0(0, p) = 0 for p > b

Ty
<t> 2^ as r2 —> 0

~"'e.

r h2
v*(x> °) = "2^

0 as r2 —» 0
, r T cos 7 1 /, 8rj . 2 \

"■+&L^r - ^ llog -sm v.

, , r» [V + P' + i>' „ ,,1"•<*' ') - 2^7 L 3— E - KJ

v„(x, 0) = D,(0, p) = 0

rsinT •
v„   —» 0 as r2 —» 0

27rr2

P) - £ [*'+Z+b° K - „E]

*(*, 0) = 0

*~£r[log^~2]-*0 as r2^°

The formula for ip(x, p) in (7.5) coincides with that given by Maxwell.11 In contrast

to the results for the source ring, the stream function here remains single valued if the

cut is removed whereas the potential <f>(x, p) in (7.2) becomes cyclic having a circulation

equal to the circulation of the vortex ring:

*(e + 4K', k') - <£(6, k') = r (7.6)

Equation (7.6) follows also directly from (7.1) and agrees with the general theory of

vortex filaments.

"See H. Lamb, loc. tit., p. 219. The corresponding streamline pattern appears on p. 221.



1950] AXIALLY SYMMETRIC FLOWS 125

8. The vortex disc. We consider, finally, a distribution of concentric circular vortex

filaments over the circular region x = 0, 0 < p < b in which the radial circulation density

be given by

c(p) = ^ (8.1)

so that the circulation around the annular region bounded by the circumference of the

disc and the circle of radius p is

C(p\ = f\(t)dt = r[i - (|)2 (8.2)

The total circulation of this disc-vortex is

(7(0) =? T (8.3)

It follows from a theorem on vortex sheets12 that the foregoing vortex disc is equivalent

to a non-uniform distribution of doublets over the same circular region. The axes of the

doublets are again parallel to the x-axis and the surface density (strength per unit area)

of the doublet sheet is C(p)/4tt.
The solution for the vortex disc under consideration, however, is obtained most con-

veniently by integration with respect to b of the solution for the vortex ring discussed

in the preceding section. We merely state the results of these lengthy computations.

,0)=2^ [•3xr1E - f- (x2 + 4P2)K + (2x2 - P2 + 62)a]<t>(x

<t>(x, 0) = (r0 — | a: |)2 as x > 0 or x < 0

<£(±0, p) = T 2^22 for p < b

<j>{x, p) = 0 for p > b

<p —» 0 as r2 —* 0

vx(x, p) = ~ ^ K + 2xa]

Vx(x, 0)=-^r(r0-\x I)2

(8.4i

bg|!)^0 as r2 —» 0

(8.5)

I2See, for example, Handbuch der Physik, vol. 7, Julius Springer, Berlin, 1927, p. 43.
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»p(«, p) = ~~J2 E ^ (x2 + b2 + 2p2)K - pa]
w LP P^i J

v„(x, 0) = 0

yp(±0, p) = for p < 6

yp(0, p) = 0 for p > b

, Tt
i>p + ^ —> 0 as r2

(8.6)

*(*, p) = ^
[7*5 , J 2 2 4\ K 2p2 - z2 - b2 ~

+ op — p j — H   rjE |ipA

i{x, 0) = 0

2Tb n
— as r2 —» 0

OTT

(8.7)

It is seen that 4>, vx , v„ , and ip are single-valued in the simply connected region

0 < k' < 1, — 2K' < e < 2K'. In contrast to the solution for the source disc, vx has a

logarithmic singularity at the edge of the disc but is continuous along x = 0, 0 < p < b.

The velocity component vp has a finite jump discontinuity as the disc is traversed. By

(8.6) and (8.2), and in agreement with the theory of vortex sheets, we obtain

*;,(+(), p) - »,(-0, P) = ^ , 0 < p < b (8.8)

9. Remark on numerical evaluations of results. The velocity potentials, velocity

components, and stream functions occurring in the four solutions given in this paper,

involve beyond elementary functions exclusively the complete elliptic integrals K and

E and the cyclic function A(e, k')- In view of (4.15), (4.16) and (5.1), the values of A

are readily obtained by aid of tables of complete and incomplete elliptic integrals of

the first and second kind. Alternatively, tables of Jacobi's Zeta function and of Jacobian

elliptic functions may be used without recourse to tabulations of incomplete elliptic

integrals. An extensive numberical tabulation of A values has been completed in the

process of work now in progress at Illinois Institute of Technology.
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