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WALL EFFECTS IN CAVITY FLOW—I*

BY

G. BIRKHOFF, M. PLESSET, and N. SIMMONS

Harvard University; Naval Ordnance Test Station, Pasadena; Ministry of Supply

1. Introduction. We consider below high-speed cavity flow of a liquid past a solid, in

which a long cavity, filled with gas (air or water vapor), is formed behind the solid. For

such a flow, the cavity pressure pc is presumably nearly constant, and the cavitation

\parameter Q or K is defined asf

Q = K = (p, - Vc)/Wf ■ (1)

Here pt is the free stream pressure, and v, the free stream velocity. There is considerable

experimental evidence1 that for small K (say K < 0.15), the physical conditions assumed

in classical "wake" theory are approximately fulfilled. We present various theoretical

considerations, which indicate strongly that a free jet is preferable to an ordinary water

tunnel with fixed walls in studying such flows, because of two related wall effects.

First, we deduce in Sec. 2 the existence of a blocking constant for each tunnel and

model, below which K cannot fall.

Second, we show that a large wall correction must be made, for drag coefficients

made in a water tunnel with fixed walls. The case of "infinitely long" cavities is covered

in Sees. 7-8 below; the case of "finite cavities" will be dealt with in Part II.

The numerical results presented in Sees. 7-8 can be deduced from formulas of Rethy.

In fact, some similar results were obtained by Valcovici [5] in 1913; but our results are

more exact, much more extensive, and based on simpler computations. They suggest

methods of estimating wall corrections, entirely analogous to those suggested by Prandtl

and Valcovici [5] for ordinary flows with wake. However, we have felt it necessary to

give a fresh discussion (in Sec. 9), which will be physically reliable for cavity flows with

small K (say K < 0.2). It is notorious that the wake interpretation is entirely inaccurate

physically.

The formulas of Rethy have been extensively generalized by Mises [3]. We give, in

Sees. 3-5, a further generalization, which permits' one to determine any flow with free

streamlines, whose hodograph is a circular sector. In Sec. 6, we discuss a new method for

basing effective numerical computations on these formulas.

2. Blocking constant. Consider the idealized cavity flow in a water tunnel with fixed

walls, depicted in Fig. 1. We suppose an incompressible, non-viscous liquid, and a sta-

tionary liquid-gas interface, with negligible turbulence. Further, we suppose a uniform

upstream flow with velocity v0, and a uniform free downstream velocity v1 as the cavity

approaches its maximum cross-section Ac , in a tunnel of cross-section A0 . The rate

*Received April 8, 1949. The material of Part I was developed by Birkhoff and Plesset in 1947 (see

Abstract 54-7-258t, Bull. Amer. Math. Soc., 1948). The material of Part II was developed by Simmons

about the same time (see Proc. 7th Internat. Congr. Appl. Mech., London, 1948, vol. 2, p. 601), and the

concept of a "blocking constant" was introduced by him.

fin Part II, we shall use Q to avoid confusion with elliptic function notation.

'Mostly unpublished, cf. P. Eisenberg and H. L. Pond, Water tunnel investigations of steady state

cavities, David Taylor Model Basin Report 668 (1948). Also G. Birkhoff, Recent progress in free boundary

theory, Proc. 7th Int. Congress Applied Mech., London, 1948, p. 7.
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of increase of liquid momentum per unit time is clearly pi^Ai — pvlA0 , where Ai =

A a — Ac . The total thrust on a long section of liquid is (p» — pc)A0 — D where p0 is

the upstream pressure in the free stream, and D is the drag. Hence

pvlAt - pv20Aa = (po - Vc)A0 - D.

But by Bernoulli's equation, p0 + pvl/2 = pc + pv\/2; by conservation of volume,

= v0A0 . Substituting,

D = P^4o(| (v2i - Vo) + (v0 - = I pAoiVi - Vof. (2)

By Bernoulli's equation, applied to (1) with pf = p0 ,

K = (vjvo)2 - 1, or (1 + Kfn = Vl/V0 . (2')

Hence if we define the drag coefficient, as is usual, in terms of the upstream velocity, so

that

CD = 2D/pvlA = (vr/vo - I)2 A J A, (3)

we have the exact relation

CD = [(1 + K)w2 - 1TA0/A ^ K2A0/4A. (4)

This defines a blocking constant, analogous to that occurring in sonic flow with M near

unity:

K ^ 2dCD)l/2{A0/A)1'2. (4')

Since CD ordinarily varies between .0625 and 1.00, we have in practice {A0/A)1/>2/2 ^

Kmin ^ 2(A0/A)1/2. Thus, to achieve K = .05, we must have A0/A about 400, at least.

3. Mathematical assumptions. Henceforth we shall discuss theoretical plane flows

with free streamlines, usually (cf. [2], Chap. XI) called flows with "wakes". For greater

FIXED

physical realism, we shall refer to cavities instead of wakes. In Part I, we shall consider

mainly infinite cavities behind wedges in the center of tunnels with jfixed walls (Fig. 1),

free jets (Fig. la), and bounded jets issuing from orifices (Fig. 6).

In addition to the drag coefficient defined by (3), for such flows, we shall consider

the drag coefficient

C, = 2 D/pv\A = CD/{ 1 + K) (3')
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based on the downstream velocity. Following Valcovici, we show that Ci gives a wall

correction which is much smaller than CD . In fact, we show that for wedges, the coi'rec-

tion is infinitely smaller.

Since the drag coefficient is in theory independent of dimensions for a given value

of a/b, one need only consider the case in which the downstream velocity is unity;

further one may put a = %/v where v denotes the upstream velocity. Thus, the stream

function is normalized so that it goes from zero on BO SB' to ir on CC'. In this notation,

since a = r/v,

w

c' = !air£- ■ <5'>

Similarly, one finds from consideration of momentum and continuity for the open

tunnel, or free jet, case

C = 2 | (1 — cos a)

and, if the previous convention regarding the stream function is adopted, a = tt/v,

v = 1 so that

C = 2 ^ (1 — cos a). (6)

It is to be noted that the upper half of the flow may be regarded as a jet issuing

from an angular orifice. In the fixed wall case, the ratio v of upstream velocity to down-

stream velocity is simply the "coefficient of contraction". Numerical correlations be-

tween v and b for this case, and between a and b for the case of a free jet, have been

obtained by Mises [3] who obtained excellent agreement with experimental observations

on jets.

4. Technique of conformal transformation. Analytical formulas covering the cases for

which we have derived numerical results, in Sees. 6-7, may be found in many places.2

2M. Rethy, Klausenburger Berichte (1879) and [4]; U. Cisotti, Rendic. Palermo 28 (1909), 307-52
and Idromeccanica piana, Milan, Sees. 140, 146; V. Valcovici [5]; R. Von Mises, [3] and [1]; P. Frank and

R. von Mises, Partielle Differentialgleichungen der mathematische Physik, Ch. XI, Sec. 2.
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However, we believe that our formulas provide a simpler basis for effective numerical

computation than any in the literature; certainly, our numerical results are new.

Let the physical plane be the z-plane with z = x + iy, and the origin at the stagnation

point 0. The complex potential is W = U + iV, where U is the velocity potential and

V is the stream function. The simplest mathematical representation is obtained by

choosing conventions as to sign so that f = dW/dz is the negative complex conjugate

Fig. 2a.

£ + iil of the vector velocity — £ + iv- In Figs. 2-2a we show the hodograph or f-plane

for the fixed wall and free jet cases. The hodograph is a sector of the unit circle, of x/n

radians.

We shall now present a unified treatment, applicable to all cases in which the pre-

ceding hypothesis is satisfied (and also if 1/f is a circular sector).

Whenever this is the case, the one-to-one conformal or "schlicht" transformations

f -> f, f " (1 + f)/(! - f), and f -> i, where

* = (1 + f)7( 1 ~ n2 (7)

map the hodograph onto a half-circle, a quadrant, and the upper half-plane, respectively.

The most general schlicht transformation doing this is therefore3 given by

Aj +B A 1 + 2Xf + r2" = V = (H)
i C+ + D C 1 + 2Mr + f2n q T w

Here A, B, C, D, X, ji are real, and X ^ n, since otherwise we would have f —» const.

3C. Caratheodory, Conformal mapping, Cambridge, 1932.
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Now in the case or Figs. 1-la, the IF-graph, or region of the IF-plane corresponding

to fluid points, is clearly the infinite strip 0 ^ V ^ ir. Hence ew occupies the upper

half-plane; this is the case treated by R6thy and Mises (op. cit. supra).

We now show that this restriction on the IF-graph is unnecessary. The W-graph

can be a plane, half-plane, or infinite strip, with or without cuts. The reason is simply that

in these cases, the upper half r-plane can be mapped conformally onto the IF-graph by

a Schwarz-Christoffel4 transformation of the special form

dW = R(t) dr, (72(r) a rational function.) (9)

Thus in the case of a symmetric wedge in an infinite stream treated by Bobyleff,5 the

IF-graph of half of the flow is the upper half-plane. In any such case, we have

dW = dr = (q dp — p dq)/(f. (9.1)

In all the cases of jets (many of which can also be interpreted as flows with cavity or

"wake") treated by R6thy and Mises,6 the IF-graph is an infinite strip. Here we can set

dW = rfr/r = (q dp — p dq)/pq = dp/p — dq/q. (9.2)

The IF-graph is a cut plane in various cases, including flows past oblique plates (Ray-

leigh) and asymmetric wedges.7 In any such case, we can normalize to

dW = t dr = p(q dp — p dq)/<f. (9.3)

The IF-graph is a cut half-plane in other interesting cases. These include simulations

T - plane s =

T = o T = I T- s2

B' S 0 B,C C
Fig. 3.

of a seaplane float8 by a plate or wedge under a free surface. In such cases, we can

normalize to

dW = t dr/(t — 1) = p(q dp — p dq)/q(p — q) (9.4)

This will be simplified further in Sec. 4, formula (12').

4See for example [2], Ch. X.

5Jour. Russ. phys.-chem. Ges. XIII (1881).

6Refs. [1], [3], [4]; also ref. [2], Sees. 11.51, 11.53, and Ex. 5 of Ch. XI. This ease also covers the useful

ease of a bend in a pipe with straight walls, meeting in an angle on the outside, and in a curve on the

inside, so as to get constant pressure along the curve. Such a design should minimize the tendency to

cavitation and flow separation on the inside of the bends; a cavitation-free expansion can be constructed

similarly.

'See [2], Chap. XII, Sec. 12.50, and Exs. 3, 8; Rayleigh, Collected papers, vol. I, p. 287.
sSee A. E. Green, Proc. Camb. Phil. Soc. 31 (1935), 589-603; 32 (1936), 67-85 and 248-52; 34 (1938),

167-84. In these papers special cases falling under (9.4) and (9.5) are treated. See also [2], Sec. 12.3.
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The TF-graph is a cut infinite strip (and the hodograph a circular sector) in various

other cases. These include an infinite free jet divided by a flat or wedge,9 a wedge in a

T - plane

s = cot n d/2

T=-s 2 T = o T=l

C C'.B' S 0 B

Fig. 3a.

stream bounded by parallel walls, one of which is parallel to a side of the wedge (Fig. 3),

and the jet produced by two streams joined in a wedge (Fig. 3a). In any such case, we

can normalize to

 r (It  _ 1 a dr aT1 dr

(r + a)(r — a — 1) a _|_ Q,"1 \_t + a T _ a"»J

_ q dp — p dq | a a 1 |

a + a"1 U(P + «?) q{p - a~'q) J

(9.5)

If the rate of flux in the two branches is equal, even though the flow is not symmetric,

a = 1 and we have by elementary integration W = (1/2) Log (t2 — 1).

5. Algebraic simplification. The algebraic simplification in the complex domain given

by Mises (refs. of footnote 2) for the case (9.2), is possible in the general case (9), when-

ever R(j) = R(p/q) can be represented explicitly10 as a linear combination of terms of

the form

Ri(r) = II(t — aa)/II(r — a'it).

It is not always easy to determine R(t) from the physical data of the problem. But

there always exist, by the theory of Schwarz-Christoffel transformations, real constants

such that

R(r) = E ~zr- + 00 + z p,(t - «,■). (10)
»>0 T Ot-i }>0

Here the a, represent points at infinity on tubes across which the stream function jumps

7T/3,- , while the a,- correspond to stagnation points.

Once these real constants have been determined (one may in practice have to carry

one or two arbitrary constants through all calculations), each t — a, = = pt/q< can

always be expressed as in (8). Moreover, since

9See footnote 8 and [2], Chap. XII, Exs. 2, 4, 6; the symmetrical case can be reduced to (9.2). We

have sketched figures for the cases not in the literature.

10From the point of view of effective computation, the explicitness of the factorization is important.

It can be very tedious to determine numerically all the roots of a general polynomial, and to verify that

the determination is exact enough for subsequent computations.
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drt/Ti = rf(Ln(p,/g,)) = dpi/pi - dqjqi

dr = dp/q — p dq/q* (11)

r, dr, = dp,/q* - p, dq,/q)

dW equals f""1 d£ times a linear combination of polynomials in f", divided by denomi-

nators of the form (1 + 2cif" + f2")"*''', where m(i) ^ 3. Now applying the general

formula, dz = dW/£ , we get after repeated synthetic division by factors q> , q, and q, .

Theorem 1. Let there be given any flow whose hodograph is a circular sector and

whose TF-graph is a strip, half-plane, or plane, with or without cuts. Then z(f) can be

expressed as a sum of integrals of the form

I r2(a< + b<n dt/ix + 2vd" + r2T(<). (12)

Here the m{i) are positive integers and the real coefficients at , &< , v{ can be explicitly

evaluated in terms of the X, n of (8), by rational operations.

In the case (9.4), the reduction is especially simple since p — q = (X — /i)f" and

p = (p — q) + q. It yields

j.n-2 J* /L±JL±r i (X — m)(1 + f) . X + M
= + - 7"w + or=^ + (x^oi (12')

In any case, the quadratic functions l + 2cif" + f2" which occur in the denominator

of (12) can be factored, in the real or complex domain. Thus

1+2V+ fn =

(r ± vnxr ± V~n) if \v\>l

(r ± I)2 if I" I = 1 (13)

l(r + e<n")(r -e~ina) if M<1

Here v = v ± (v2 — l)1/2 and a = (l/n) Cos-1 v respectively, so that the factorization

is explicit. We conclude, using partial fractions again.

Theorem 2. In the complex domain, we can represent z(f) as a sum of constant

multiples of integrals of the form

J f~2dt/(f — /3i)'n, (m = positive integer). (14)

In the case (9.2) treated by Rethy-Mises, we always have m = l. A slightly weaker

result holds in general. Since

jf f* 1 = - p^-1 rff
Ur - Pi)'-1-J (r - pi)m (r - pr-1'

we get through repeated integration by parts, the following result.

Theorem 3. Under the hypothesis of Theorem l, z(f) can be expressed as a sum of

constant multiples of terms of the form f'/(f" — /3,)m, and of integrals of the form

/ r df/(f - /3.). (14')
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6. Effective numerical computation. In the general case, the effective computation of

z(f) involves various questions, which we shall only touch on. By introducing new

variables -co,- = £"/&>, we see that the evaluation of (14') can be effectively accomplished

by constructing a table of the incomplete beta functions

fJ0
</ du>/(\ -f" ") (15)

in the complex domain. After considerable study, we are impelled to the conclusion

that this is a more effective way to compute z(f), in the general case when the hodograph

is a circular sector than the method found in the literature, for a general n. We can

certainly state

Theorem 4. Under the hypothesis of Theorem 1, z(f) can be explicitly expressed

in terms of elementary functions and incomplete beta functions.

If n = h/k is rational, then the substitution f = (j)/hak reduces the complex integrals

(14') to the form / a" da/ (ah — 1), where y, h are integers. Moreover

-ft [ JLAi. . ± - / Log („ - (10)
J 1 — a fc-i J 1 — coff *-i

Hence we conclude (cf. Mises [1], pp. 821-2, for the case (9.2)).

Theorem 5. If n = h/k is rational in Theorem 1, then we can express z(f) explicitly

in terms of complex logarithms and rational functions of fv\

However, unless k is small, the effective computation of a flow field by this method

will be extremely small. Hence Theorem 4 however elegant, does not adequately de-

scribe the real problems of obtaining numerical results of physical interest. Thus phy-

sically, in the problems of Sec. 2, one is given n, and wishes to correlate the asymptotic

velocity with the ratio b/a = (plate width)/(channel width); not X or p. It is most

convenient to correlate these as follows.

In the fixed wall case, f = 1 when W = — , ew = 0; f = v when W ew = oo. Com-

paring with ew = p/q, we get q = (1 — f")2 and p = (f — n") (f" — v~"). This gives,

after reducing to partial fractions,

. 2n?~2 d? . rwT2 dt . nr* dt
dz = - i _ r + (i - vT) +

In the free jet case, f = 1 when ew = and f = e'a = ft is complex when ew = 0.

This gives similarly

2nf~2df np"r2 d{ nf""2 df
dz = i - r ~ i - err ~ (7a)

The application of the incomplete beta function to this "fixed wall" case is relatively

simple. Thus if we write vf = eT!/nr, etc., in (17), we see that we could compute b(v),

corresponding in the z-plane to f = e*'/n, from a table of the real incomplete beta function

*.(») = I" '""2 dr/( 1 + r") = I ["" co-,/n du/il + «), (18)
J0 ft J0

We could also obtain the velocity (hence pressure) distribution along the wedge, the

tunnel wall, and the dividing streamline from the same table. The case of the free jet

is'less simple, and will be discussed in Sec. 7.
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In this connection, we note that the real definite integral $„(1) can be expressed11 in

terms of the logarithmic gamma function ^(n) = V(n)/V(n). Specifically,

2n 2 J 2n ̂ 2 2J. (19)

Hence, if v is near one (case of large channel), we need only compute <5„(v) — $„(1)

and $n(l/t>) — fI>„(l), which are presumably easy, in terms of series (cf. Sec. 8).

7. Numerical results for plate. In case the wedge is a plate, n '= 2 and the preceding

remarks are unnecessary. We can integrate (17) easily, getting

z = — 4 Tanh-1 f + 2yTanh~1 vf + 2 Tanh-1 (f/v) (20)

b = (tt/v) — tc + 2(v — 1/v) Tan-1 v, (21)

in the fixed wall case. The drag coefficient C0 and C\ of formulas (5), (5') may now be

correlated with values of b/a, using v as a parameter. Numerical results are given in

Table 1, and the results are shown graphically in Fig. 4. The "wall correction" for a

closed water tunnel may thus be estimated.

The numerical results demonstrate clearly that basing the drag coefficient on the down-

stream velocity leads to a smaller correction. This is the result of Prandtl and Valcovici [5],

but based now on much more extensive evidence. This conclusion will be discussed

further in Sec. 8.

In the free jet12 case, we get similarly from (17a) with n = 2,

2dt 2d{ 2 ( di di \

* " i - r+ i + r" vi - « +1 + k)

_ 1 ( d* i d£ \
02 \i - t/p ^ i + fi&r

b = 7r(l — Cos a) — 2 Sin a Log tan ^

(20a)

(21a)

This expression together with the drag formula (6) gives the values of Table 2. These

values are also shown graphically in Fig. 4.

In the "fixed wall" case of the closed tunnel, the pressure at the tunnel wall is a

quantity which may be readily measured; thereby, a further comparison with theory is

made possible. If p0 is the static pressure and v is the stream velocity as a great distance

upstream from the lamina, then the static pressure p, where the stream velocity is u,

is determined by the relation

P«~ P _ «! _ 1 (22)
(pv2)/2 ~ v2 L (22)

"See [2], p. 315; in [1], p. 110, a different notation is used. The function ^(x) is tabulated in vol. I

of The British Association Tables, and many other places.—Using this result, we can correlate CD with

the case of a symmetrical (Bobyleff) or assymetrical wedge in an infinite stream, in the case that the

stagnation point it at the leading edge. Existing tables of the incomplete beta function do not cover the

range needed for the present problem.

12In the free jet case, if n = 2h is an even integer, we can also slightly simplify the computations since

(1 + a? + f")(l - af + f") = 1 + (2 - o»)f« +
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s£
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Positions on the tunnel wall are z = x + iir/v and one gets at once from (20), with

v ^ u ^ 1

„ , 1 + M , , 1 + TO , 1 , U + Vx = — 2 log   h v log   + - log ,
1 — u 1 — vu v u — V

= — 4 tanh-1 u + 2v tanh"1 vu + - tanh- v - ,
v u

where the origin of z is at the stagnation point 0. The pressure coefficient (22) has been

evaluated as a function of x for three values of v; the results are shown in Fig. 5, and are

tabulated in Tables 3a, 3b, 3c.

-S-- »
a a

1.0

0.3

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

— V

"T
*to—

■ V.

—-V

« 0.700

■ 0.900

* 0.102

« 0.0114

-0.975 •0.00071

>

-!«J

\

• 2,0 -1.5 -1.0 -0.5 0 »0.5 .1.0 *1.5 iZ.O

RATIO DISTANCE ALONG CHANNEL WALL TO CHANNEL HALF WIDTH,

Fig. 5.
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8. Case of bounded jet. A case of particular physical interest is that of a semi-infinite

closed channel terminating in a free jet. The physical plane is depicted in Fig. 6, where

FIXED

TUNNEL WALL

I
B

Fig. 6.

the upper half of the flow pattern is shown. As in Sec. 1, momentum considerations give

the drag coefficient. If we normalize as before so that = 1, a = ir/v, the drag coefficient

based on the upstream velocity becomes

Co = | (1 - 2v Cos a + v2)/v* (23)

C, = | (1 - 2v Cos a + v)/v. (23')

Using (9.2), we get almost immediately

dz = d.Zi + dz2 , (17b)

where dzx is given by (17) and dz2 by (17a). We therefore have b = 6, + b2 , where 6,

is given by (21) and b2 is given by (21a). Moreover in general

, i + vt , i, v + f ., i + /sr i, i + r/0
«=»'•>« T^f +»108 —s -" 1o® ' ilog ■

where the origin of z is at the stagnation point on the lamina. Consider the channel

wall CC'; along this wall f is real and may be replaced by u, v u ^ 1, and the complex

coordinate along CC' is

, • / i 1 + vu , 1 , v + u , iir , A , A ̂
z = x + nt v - v log   K ~ log  h \A + A*),

1— vu v u — V V

where

1 + eiau
A = e'a log

1 {a '
1 — e u

and AS is the conjugate of A. In particular at C', u = 1 so that the distance from the

plate to the channel opening is

xe- = i = v log + £ los yzrv ~ U + A*)-
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When u = 1, one finds that

A + A* = 2 cos a log cot a/2 — ir sin a

and

= (v + i) log | ^ " + 7r sin a — 2 cos a log cot a/2,

= 2^v + tan h~lv + ir sin a — 2 cos a log cot a/2.

X- plane

Si

C'

it

i ♦ y n
0-3 ITyn Plane

B" C"

B.C C'

s
Fig. 8.

T - plane

T»-t2 T =o T =1 T-s2

(23")

C' C" B" S 0 B,C C'

y = 7r yj - o if/ * v
Fig. 9.
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Fig. 10a.

1.0 20

RATIO PLATE HALF-WIDTH TO CHANNEL HALF - WIOTH

Fig. 10b.
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A positive value of I corresponds to a plate position in the region of the free jet, a negative

value to a plate position in the region of the closed channel.

Graphical evaluation of the relation between a and v as given by (23"), has been

carried out for 1/(2ir/v) = 0, ± 1, + 2; and the correspondence of C0 and Cx on b/(ir/v)

for each of those values of 1 is shown in Figs. 10a to lOd. The dependence of the angle, a,

1000

OjO 0.2 0.4 0.6 0.8 1.00
RATIO PLATE HALF-WIDTH TO CHANNEL HALF-WIDTH

Fig. 10c.

of the jet deflection on v is shown in Fig. 11; the dependence of the ratio, b/a, of plate

half width to channel half width on v is shown in Fig. 12. Table 4 summarizes the nu-

merical results.

It is interesting to see what could be determined from tables of the incomplete beta

function, in the cases of a wedge in free and bounded jets. By (20a), in a free jet, one

could obtain the dependence of the wedge size b on the jet angle a, since | j8 | = 1 and

| f | = 1 at the points where the free streamline begins, knowing (18) only along a con-

tour consisting of the real axis and the unit circle. By (17b), the same procedure is

applicable to wedges in bounded jets, and one can locate the orifice as well.

However, it seems impossible to obtain the pressure distribution along the tunnel
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wall and dividing streamlines in these cases, without tabulating (18) over the entire

complex plane. Hence we conclude that, with general n (not if n = 2), the fixed wall

case is substantially easier than the free jet case, which is about as hard as the bounded

jet case.

9. Stability of the pressure coefficient. We can sharpen the conclusion of Sec. 7. In

the fixed wall case, for any n, the theoretical pressure coefficient is approximately inde-

pendent of v, if based on the velocity at the separation point, (downstream velocity). This

we call the principle of stability of the pressure coefficient.

Theorem 5. In the fixed wall case, the pressure coefficient13 along the wedge, has a

zero derivative with respect to v, at v = 1, for given wedge dimensions.

Proof. By (7) and (9.1), in the case of a wedge in an infinite stream, the complex

potential r satisfies

r = (i + n2/(i - n2. (24)

13The pressure coefficient is 2(p — pc)/pv2, where pc is an ambient (cavity) pressure, and v an ambient

velocity. Our proposal that one should use the free streamline velocity for v, instead of the free stream velocity.
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Hence if we write v = 1 — e, we have

r(v) = (1 + vnf/(l - v")2 = 4/nV(l +•••) = 0(1/e2). (25)

Now consider the functional relation between r and the complex potential W for

the fixed wall case, for the same f. (They have the same hodograph; hence this is schlicht.)

We normalize so that (in Fig. l)PF(iS) = 0 and W(0) = 1—i.e., so as to keep the total

I 1.000
T3

RATIO OF UPSTREAM VELOCITY TO DOWNSTREAM VELOCITY V —

Fig. 11.

■change in W along the wedge constant. This makes the TF-graph a strip of unknown

width air, whence by (8)

W = a Ln (At + B)/(Ct + D). (26)

We solve for a, A, B, C, D by matching W and r at f = 0,1, v, e,"/n. This gives explicitly,

writing t(v) = x,

V - Ln (^)/Ln (^)

= T 1 + (t/2x) + (r2/3a;2) <i i rv V
1 + (l/2x) + (l/3a;2) + • - - ' = + 0(e )!•

(27)

From (27) we conclude that changes in z = f dw/i; are 0(«2) = 0(1 — v)2 for corre-

sponding values of f and hence p, completing the proof.

This suggests that in practice, cavity CD should be computed on velocity at the
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separation point, and not on upstream velocity. In estimating velocity at the separation

point, we can either (i) use the Bernoulli equation and measure the cavity pressure, or

(ii) assume uniform velocity in the section of maximum cavity diameter, and estimate

the latter's cross-section.—This discussion is only applicable physically to the case of a

clear cavity.

.800 1.000
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FlG. 12.
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