
1951] J. A. MC FABDEN 323

CONFORMAL MAPPINGS FOR CERTAIN DOUBLY CONNECTED DOMAINS*
By J. A. McFADDEN (University of Michigan)**

1. Introduction. In this paper conformal mappings are derived for some doubly
connected domains, the inner boundary being formed by slots and the outer boundary
being the unit circle. All these mapping functions utilize elliptic functions; those for
the more complicated domains involve elliptic functions of two different moduli. The
domains appear, for example, in the linearized theory of supersonic flow past conical
bodies.

2. Mapping of domains bounded by a slot and the unit circle. Consider first an
annular domain in the fi-plane, rx < | fi | < 1, and the corresponding rectangular
domain in the Zi-plane, — 2Kx < xx < 2Kx , 0 < y1 < K[ , obtained by a logarithmic
transformation from the fx-plane. (See Fig. 1. Circular domains will be designated by
Greek letters, f,- = + it],-, and rectangular domains by Roman letters, z,- = x,- + iyt.)

Zi = (VKi/iri) log ft (0 < arg ft < 2v) (1)

The radius rt of the inner circle in the ft-plane is given by the expression

n = exp (-icK[/2Kx). (2)

The circle ] ft | = r1 can be collapsed onto a horizontal slot, —(1 — k[)/kx < <
(1 — k[)/ki , V = 0, (see Fig. 1), with the circle | ft | = 1 mapping onto the circle
| ft | = 1, by means of the transformation

, = cn (gt ; fcQ + ik[ sn (gt ; fcQ
f dn (Zl ; kj ' {6)

where sn ; fci), cn (zt ; fcj), and dn (z2 ; /ci) are the Jacobian elliptic functions with
argument zx and modulus kx , and where k[ = (1 — kl)1/2. (See, for example, reference
[1].) The constants Kx and K[ in equation (2) may then be identified as the complete
elliptic integrals of the first kind having moduli and k[ , respectively. An alternative
form of equation (3) is the following:

-(1 + f'2)/2f = sn - Kx ; kx)
(3a)

(-2Kx <xx< 2Kx ; 0 < yx < K[)

In this form we can understand the reason for the appearance of the Jacobian elliptic
functions. The left member of (3a) maps the two boundaries in the f'-plane onto the
real axis of an intermediate plane. The right member of (3a) maps the rectangular
boundary in the Zi-plane onto the same real axis, since the sn-function is real on all
four sides of the rectangle.

Note: This transformation is related to the transformation f' = — (fc0)1/2 sn (z0 ; k0)
by a Gauss transformation of elliptic functions (see, for example, reference [2]) and a
translation of the coordinate axes. In the aerodynamic application mentioned above,
the form (3) is found to be much simpler. The related form is discussed by Holzmiiller [3].
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The transformation (3) and equivalent combinations of functions have been used
by previous investigators in the treatment of the linearized supersonic flow past a delta
wing. (See, for example, reference [4].) We shall use it here as a basic transformation,
from which more complicated transformations can be derived.
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Fig. 1. Conformal Mapping of Domains Bounded by a Slot and the Unit Circle.
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In equation (3) we may replace f' by if and z, by (zt -f . The resulting transforma-
tion collapses the circle | f i | = r, onto a vertical slot £ = 0, —(1 — k[)/ki < rj <
(1 — k'J/kt (see Fig. 1). The transformation function is

f = cn (gj ; &,) + i sn (z, ; kt). (4)

An alternative form of equation (4) is the following:

«(1 - f2)/2f = sn ; ki)

(-2K, < xt < 2K, ; 0 < », < tfj)
(4a)

The transformation (1), followed by either (3) or (4), leaves the included segments
of both axes invariant as well as the unit circle. (See Fig. 1.)

3. Mapping of domains bounded by a cross and the unit circle. Because of the invari-
ance of the axes, the horizontal slot may be opened into a circle with symmetric hori-
zontal fins in the f3-plane (see Fig. 2). We apply the inverse of transformations (1)
and (2), but with a smaller modulus k3 < ki . That is, let

o, = cn (z3 ; fc3) + ik's sn (z3 ; k3) .
dn (z3 ; k3) '

where

z3 = (2K3/iri) log r.3 , (0 < arg f3 < 2tt). (6)

The corresponding domain in the z3-plane is a slotted rectangle (see Fig. 2).
The radius of the inner circle in the f3-plane is r3 , given by the equation

r3 = exp (—ttK'3/2K3). (7)

An alternative form of equation (5) can be written, similar to equation (3a).

-(1 + f'2)/2f = sn (z3 — K3 ; k3)

( — 2K3 < x3 < 2K3 ; 0 < y3 < K3)
(5a)

If we combine equations (3a) and (5a), we may map directly from the Zj-plane to
the z3-plane. The resulting transformation may be written in four forms: (Related
functions have been given by Kronsbein [5].)

sn (zi — Kx ; kx) = sn (z3 — K3 ; k3)

cn (zi — Ki ; kt) = cn (z3 — K3 ; k3)

dn (Zl - ^ ; kO = ±[1 - kl sn2 (z3 - K3 ; k3)]1/2 (8)

±[1 - k23 sn2 (zi - Ki ; ki)]U2 = dn (z3 - K, ; fc3)

(~2Ki < Xi < 2Ki ; 0 < yi < K'i — 2K3 < x3 < 2K3 ; 0 < y3 < K3)

If we argue in similar manner with equation (4a), we may construct a domain
bounded internally by a circle with symmetric vertical fins in the f2-plane. (See Fig. 2.)
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Fig. 2. Conformal Mapping of Domains Bounded by a Cross and the Unit Circle.
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Again a new modulus k2 < ki is used. The resulting transformation may be written in
four forms:

sn (zj ; ki) = sn (z2 ; k2)

cn (zt ; k,) = cn (z2 ; k2)

dn (z, ; fcO = ±[1 - sn2 (z2 ; &2)]1/2 (9)

±[1 - fc2 sn2 (za ; k,)]U2 = dn (z2 ; k2)

{ — 2Ki < Xi < 2Ki ; 0 < yx < K[ ; — 2K2 < x2 < 2K2 ; 0 < y2 < K2)

where
z2 = (2K2/iri) log f2 , (0 < arg f2 < 2x). (10)

The corresponding domain in the z2-plane is again a slotted rectangle. (See Fig. 2.)
The radius of the inner circle in the f2-plane is r2, given by the equation

r2 = exp ( — irK'2/2K2). (11)

A transformation similar to equation (3) will collapse the circle | f2 | = r2 onto the
real axis in the f4-plane, leaving the vertical fins on the imaginary axis. (See Fig. 2.)
The transformation equation is the following:

_ cn (g2 ; fc2) + ik2 sn (z2 ; k2)
U dn (z2 ; k2) ( j

A transformation similar to equation (4) will collapse the circle | | = r3 onto the
imaginary axis in the f4-plane, leaving the horizontal fins on the real axis. (See Fig. 2.)
The transformation equation is the following:

U = cn (z3 ; k3) + i sn (z3 ; fc3) (13)

The two definitions of f4 in equations (12) and (13) are equivalent if and only if
the moduli are related by the equation

K = k'M . (14)
[This statement can easily be proved in the form (17).] Then the inner boundary in the
f4-plane is a cross consisting of the horizontal slot, —(1 — k'2)/k2 < |4 < (1 — k'2)/k2 ,
rji = 0, and the vertical slot, £4 = 0, —(1 — fc3)/fc3 < »/4 < (1 — k'3)/k3 .

By a series of steps we have mapped the circle | fi | = (Fig. 1) onto a cross, the
unit circle remaining invariant (as well as the coordinate axes).

It is convenient to introduce a shape factor e for the cross, defined by the relation

6 = k'2/(.k[)1/2 = (*0in/ki . (15)

e has the range (k[)1/2 < e < (k[)~1/2. Then the moduli k2 and k3 and the respective
complementary moduli are given in terms of e and kx by the equations

h = (1 - e2k[)U2, K = e(fc!)1/2,
(16)

k3 = (i - kiA2)1/2, k'3 = (k0v'/€.
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If e = 1, then k'2 = k?, — (k[)l/2 and the vertical fins have the same length as the
horizontal fins. If e = (k[)~1/2, then k2 = 0, k3 = , r2 = 0, and equations (8) become
an identity. Then the cross degenerates to a vertical slot. If e = (k[)1/2, then k2 = kl ,
k3 = 0, r3 — 0, and equations (9) become an identity. Then the cross degenerates to
a horizontal slot. In general, if e > 1, the vertical fins are longer than the horizontal
fins. If e < 1, the horizontal fins are longer. (Fig. 2 is drawn for e < 1.)

The combination of equations (9) and (12) or of equations (8) and (13) gives the
resulting equation

2 cn fa ; kj) + U(k[)l/2 sn fa ; k,)
4 cn fa ; k,) — ie(k[)1/2 sn fa ; kj'

Although the function f \ is an elliptic function, the function is not. It is doubly periodic,
but it has branch points. In particular, there are branch points at the images of the
point f4 = 0, the intersection of the cross. These points are defined by the equations

* = ±(i K, + r) + iK[ , - r) + iK[ . (18)

[These points are the zeros of the functions dn (z2 ; k2) and dn (z3 — K:i ; k3). See Fig. 2.]
If e < 1, t > 0. If € > 1, r < 0. If e = (k[)1/2, then r = fKx and the branch points
coalesce to form simple zeros at the points zx = + iK[ , the zeros of the function
(3). If e = (k[yU2, then t = —^K, and the branch points coalesce to form simple zeros
at the points Zj = i.K[ , ±2Kx + iK[ , as in the function (4).

Let us derive the mapping from the f i-plane onto the f4-plane by a distinctly different
method. First, we square the variable , making the two circles doubly covered, the
inner one being of radius r\. Let the appropriate modulus be kx, so that the corresponding
complete elliptic integrals are related to the radius by the equation

r2 = exp ( -irK[/2K,). (19)

Second, apply the transformation (3) with modulus k, in the two-sheeted plane, pre-
serving the doubly covered unit circle and creating a quadruply covered horizontal slot.
Third, extract the square root. The final boundaries are the simply covered unit circle
and a cross with four fins of equal length. The resulting transformation may be written
as follows: (A related function has been given by Kronsbein [5].)

, ,s2 = cn ([4g,/w] log ti ; fci) +' ik[ sn log ; kt)
dn ([4_K"1/«] log f, ; kj

Comparison of equations (2) and (19) reveals that the moduli ki and kt are related
by a Landen transformation. (See, for example, reference [6].) If we apply the Landen
transformation, whereby

kr = (1 - *0/(1 + W, K = 2(fcQ1/2/(1 + *0,
(21)

K> = J(1 + *0Ki , K[ = (1 + k[)K[ ,

and
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si(U + ;h) - (1 +

cn ([1 + k[\z, ; *,) - ' " '22<

dn fri 4- fc'lz -Jc)— ^ ~ ^ ~ ^ sn ^dn Q1 + i J i » ki) - dn (2i . ^

then equation (20) may be written

cn
cn (zx ; kx) - i(k[)1/2 sn ; kj'

_ cn {zx ; fcQ + i(kQ1/2 sn (zt ; fcQ , .
iW — „„ /„ . i,\ _ :<i'\U2 „„ /„ . i„ \i ^6)

where zx is given as in (1).
We observe that equation (23) is indeed the mapping function for a cross of equal

lengths, for it is a special case of equation (17), namely e = 1.
The cross of equal lengths can easily be mapped into the cross of unequal lengths in

Fig. 2. We apply a linear fractional transformation which preserves the unit circle in
the two-sheeted plane. If the transformation

,2 _ (K)' ~ ~ !)/(€ + 1)
1 - [(« - i)/(« + I)](f02 (24)

is combined with equation (23), then equation (17) is the result.
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EFFECT OF A RIGID ELLIPTIC DISK ON THE
STRESS DISTRIBUTION IN AN ORTHOTROPIC PLATE*

By A. J. OWENS and C. B. SMITH, (University of Florida)

A thin orthotropic plate of uniform thickness will possess two perpendicular axes
of symmetry in the plane of the plate. An infinite rectangular plate of this type con-
taining a rigid elliptic disk with major and minor axes coinciding with the axes of sym-
metry is discussed. A uniform tension is assumed to act along two opposite edges of the
plate and a mathematical analysis of the stress distribution is given. It is assumed the
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