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COMPRESSIBLE FLOWS WITH DEGENERATE HODOGRAPHS*

BY
J. H. GIESE
Buallistic Research Laboratories, Aberdeen Proving Ground

1. Introduction. The theory of compressible perfect fluids has developed slowly
because the basic equations are non-linear. Thus it has been profitable to consider
special examples, such as will be studied here. The present problem originates in the
study of steady, two-dimensional, isentropic, irrotational flow. If there is a biunivue
mapping of the physical plane onto the hodograph plane, then the equation for the
velocity potential function can be linearized by a Legendre transformation [5].** This
draws attention to the case in which the transformation may fail because the mapping
is nowhere biunique. This suggests the problem to investigate all three-dimensional
flows whose images in the hodograph space, for Cartesian coordinates and velocity
components, are curves or surfaces. Such flows are sometimes said to be “lost” [10] by
contrast with the nomenclature used here. By analogy with the usage in [5], flows with
one- or two-dimensional hodographs will be called simple or double waves. The hodograph
of a flow will be called degenerate when it has fewer dimensions than the original physical
space.

The problem can also be motivated as follows. Among the most familiar compressible
flows are Prandtl-Meyer expansion around a corner or curved wall [8]; Busemann’s
cylindrical or “swept-back” flow produced by superposition of plane flow and uniform
flow normal to that plane [2]; Taylor-Maccoll axisymmetric flow about a cone [1, 3, 7, 11];
and Busemann’s general conical flows [2]. In these examples the loci of particles of equal
velocity are planes or straight lines, so their hodographs are degenerate. The question
arises, whether this enumeration is exhaustive.

In this paper the flow will be assumed to be steady, isentropic, and irrotational.
Characterizations of one- and two-dimensional hodographs will be developed, and
generalizations will be found for the properties of the examples mentioned above. As
an example the construction of flows with axisymmetric degenerate hodographs will be
considered.

Some aspects of this problem have been considered by Germain [6]. M. H. Martin
has also made an unpublished investigation along these lines. The construction of all
axisymmetric flows with degenerate hodographs was studied by Bateman and later by
Stewart [10]. Opatowski [9] has discussed very concisely the more general problem to
determine those flows for which the covariant velocity components in some curvilinear
coordinate system depend only on two coordinates.

2. Fundamental equations. Compressible perfect flow obeys the equations of motion

u; du/dx’ = —p~' 9p/ox” (2.1)
and the equation of continuity

dpu,)/0z* = 0. (2.2)

*Received Aug. 15, 1950. Presented to the American Physical Society, Feb. 1, 1947.
**Numbers in brackets designate papers listed at the end of this note.
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The z° ( = 1, 2, 3) denote Cartesian coordinates in the physical space, u; velocity com-
ponents, p density, and p pressure. The convention that every pair of repeated sub- or
superscripts implies summation over their range has been adopted. For irrotational flow

ou;/dx’ = du;/ox’. (2.3)
For isentropic flow
p/Po = (p/po)” (2.4)

for certain reference values p, and p, , and v = ¢,/c, , the ratio of the specific heats at
constant pressure and volume. Equations (2.1), (2.3), and (2.4) imply Bernoulli’s
equation ‘

Juu; + o®/(y — 1) = 3¢, (2.5)
where
a® = dp/dp = vp/p (2.6)

is the square of the speed of sound, and the constant ¢ is the limiting speed of flow. By
(2.3) there exists a velocity potential function ¢ such that

u; = 0p/0%". (2.7)
By (2.1, (2.3), (2.4), and (2.6)
a® 3p/dx" = —pu; du;/9x", (2.8)
and by (2.2), (2.7), and (2.8)
(a®8;; — wiu;) 9%/0x' 9z’ = 0, (2.9)
where Kronecker’s delta, 8;; = 1 (0) if 2 = (5) j, and where by (2.5)
@ = 3y — D — ua). (2.10)

3. Degenerate Legendre transformations. The transformation z° — wu; maps a
three-dimensional region of the physical space onto an n-dimensional region of the
hodograph space if and only if

dp/0x" = u; = u;(u), 3.1
the functions p*(x) (¢ = 1, --- , n) are independent, and n of the functions u,(u) are
also independent. Hence the

rank of || 9u®/dz’ || = rank of || du;/u® || = n. (3.2)
Disregard n = 0 (uniform flow). Then n = 1 or 2 for degenerate hodographs. Let
k=¢— 2'u; (3.3)
By (3.1) and (3.3) ok/0x’ = —x*(du./0u*)(8r"/dx’). Accordingly, the Jacobian matrix
of k and p® has the same rank as that of u* alone, so k = k(u). (3.3) becomes
? = z'u(w) + kW), (3.4)

and by (3.1) and (3.4) (z* du./9u” + 9k/du) du®/dx’ = 0. By (3.2)
z* ou,/ou* + 0k/du” = 0. (3.5)
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By (8.5)
(x* 9°u./op® ou’® + 0%k/ou™ ou®) au’/ox’ = —ou;/auc. (3.6)
By (3.2) this implies
rank of || 2° 8*u./du” ou® + 8°k/ou" 3’ || = n. 3.7

Hereafter assume that u,(u) and k(x) have been chosen to satisfy (3.7). Then (3.5)
can be inverted to yield p®(x).

By (3.1) a point on the hodograph is determined by setting p® = ug . The set of

points in the physical space which is mapped onto u.(u,) will be called its prototype.
(3.5) implies

TueoreM 3.1: If the coordinate axes of the physical and hodograph spaces are parallel,
the prototype in the physical space of a point, P, of a one (two) dimensional degenerate
hodograph, H, is contained in a plane (line) parallel to the plane (line) normal to H at P.

So far ¢ has only been compelled to yield a degenerate map. For a compressible
flow (2.9) and (2.10) must also be satisfied. In (2.9) 8°%0/d0z" 9z’ is required. By (3.1)

d%p/0x' 3z’ = (Qu./u")(9u"/0x’), (3.8)

where du°/dz' must be obtained from (3.6).
4. Simple waves. When n = 1, (3.6) to (3.8) yield

"o/0x'0x’ = —ulul/(z"u'n + k'), (4.1)
where primes denote ordinary derivatives with respect to u'. By (2.9), (2.10), and (4.1)
adulul = (uaul)’. (4.2)

If s is arc-length measured from some point of the hodograph curve and ¢ is speed of flow

(") = wu!, 4.3)
= uu, . (4.4)

Now (4.2) implies
@’ = 3(v — (¢ — ¢*) = ¢*(dg/ds)". (4.5)

Construct a cone, K, with vertex, V, at the origin of the hodograph space and passing
through the hodograph curve C. When K is developed onto a plane, C will be deformed
into a plane curve C’ to which (4.5) also applies. Hence C’ is the familiar epicycloid of
the Prandtl-Meyer flow around a corner. Accordingly, C will be called a conically de-
SJormed Prandtl-Meyer epicycloid.

THEOREM 4.1: The hodograph of a simple wave consists of arcs of conically deformed Prandtl-
Meyer epicycloids. Conversely, a sufficiently small arc of a conically deformed Prandtl-
Meyer epicycloid, on which the direction of the tangent vector varies continuously, is the
hodograph of a stmple wave.

For the converse, construct a velocity field with the prescribed hodograph. Suppose
that for A < ' £ B, u; = u,(u") is an arc of a conically deformed Prandtl-Meyer
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epicycloid, the u, being of class C' on AB. Let f(u') be an arbitrary function continuous
on AB, and let

o) = ai+ [ " ) ) d

where the x are constants. To prevent the curve 2° = z'(u') from intersecting itself,
decrease the interval AB, if necessary. As suggested by Theorem 3.1, through each
point z'(u') construct a plane normal to w/(u'), and assign u;(u') to every point of this
plane. By making the interval A B small enough, and by considering only a region close
enough to the curve ' = z‘(x'), a continuous single-valued velocity vector field can
be obtained. Finally, by constructing in this vector field a family of streamlines close
to the streamline z° = z'(u'), a stream tube, and hence a flow with the desired hodograph
will be produced.

If (4.5) is interpreted as an equation of a plane curve, it is clear that in a simple
wave the flow must be supersonic. Discontinuities in the second or higher order derivatives
of u;(u") are propagated along prototype planes. Thus the Mach cone at any point, P,
of a simple wave must be tangent to the prototype plane, II, through P, and the stream-
line, S, through P intersects II at the Mach angle.

The reader may verify the following assertions. (1) Sufficiently small arcs of any
curve with continuous curvature can be arcs of streamlines of simple waves. (2) For a
sufficiently small range of values of u' any one parameter family of planes 4,,(u")z™ +
B(u') = 0 can be chosen to be the prototype planes of a simple wave, provided A4,,(u")
and B(u') are of class C', and provided that not all of these planes are parallel.

As an example for this section, consider a simple wave, W, in which the envelope
of the prototype planes is a cylinder, S. By Theorem 3.1 the hodograph, H, of W is a
plane curve. Orient axes so H lies in u; = constant, and let Q* = ¢° — uj . (4.5) becomes
1y — D[(® — ui) — Q] = (QdQ/ds)*. This defines an epicycloid obtained by shrinking
the generating circles of the usual Prandtl-Meyer epicycloid by a factor (1 — u3/c”)"%
As indicated in Sec. 5, W is a swept-back version of Prandtl-Meyer flow.

5. Double waves. When n = 2 let A = det || 2" 0%u,/0u® 9’ + 8°k/0u” 3u° ||,
where A > 0 by (3.7). By (3.6)

Aa”ﬂ/axk = (_1)a+ﬂ+l(xm a2um/a#a+l auﬂ+1 + azk/aﬂawl a'u8+l) auk/a#a, (51)

where « is summed, but not 8, and where o + 1 and 8 + 1 are reduced mod 2. For fixed
u” the solutions z* of (3.5) lie on a line. Let »*(u) be parallel to this line, so

v du;/ou” = 0, (5.2)
and let z3(u) be a particular solution of (3.5). The general solution is
ot = zo(u) + ' (), (5.3)
where the parameter r is independent of u*. Now (5.1) becomes
AdpP 3zt = (= 1) P (™ 4 275)0%Un/Ou" T Ot 4 0%k /Ou Ou" U /Ou  (5.4)
for 8 not summed. By (2.9) and (3.7)

(a%6" = wu,)(@us/0u") (Bu;/Op’) (= 1)
(5.5)
.[(rym + xﬂé)GZum/a#a+lauﬁ+l + azk/a“a+la“ﬁ+1] — 0
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with both « and 8 summed. Since r is independent of u®
(@*8" — wsu;)(Ous/ ") (Bus /W) (— 1)* " %u, /3" O’ = 0, - (5.6)
(@28 — wiu;)(Qus/An®)(0u; /) (— 1) (&30 U/ O

5.7
+ azk/aﬂa+laﬂﬁ+l) — 0.

Now let g.; be the covariant metric tensor of the hodograph surface and b, its
second fundamental tensor. By definition

Gas = (9u:/0p")(Ou./ 01, (5.8)
bag = v"(3%Um/Ou" ), (5.9)
where »™ is a unit normal to the surface, i.e.
vt = 1. (5.10)
Also
Uy, OU/Ou” = q 9q/0u” = aM 9q/du”, (5.11)

where M = q/a. Write d¢/0u® = ¢,, , where the subscript ,, denotes the covariant
derivative with respect to u* and based on g, . Then (5.6) becomes

(gaﬂ - qu.aq.ﬂ)(_l)aﬂgban g+1 — 0. (512)
A particular solution of (3.5) is
zo = —(9k/0u")g" (3u:/3n"), (5.13)

where ¢°* is the inverse of g,, . Since the Christoffel symbols of the first kind, based on
Jap , are [aB, ¥] = (u;/du”)(8%u;/0u" du”), the second covariant derivative of k becomes

ks = 8°%k/Ou" 0" — (3k/3u")g"" (Ou./0u’) (8°u:/0n" ). (5.14)
Hence (5.7), (5.8), (5.11), and (5.14) imply
(Gas — M?q,00.6)(—1)* "k q115:1 = 0. (5.15)

(5.12) is a second order quasilinear partial differential equation for three functions.
To determine u,(u) requires two more equations, which may be obtained by assigning
a special form to the coefficient tensor g.s — M>q, .q s . The resulting systems are classified
according to the nature of the characteristic curves of their integral surfaces.

A characteristic is a curve on which the coordinate functions, their first partial
derivatives, and hence the metric tensor are continuous, while the components of the
second fundamental tensor may have discontinuities. Suppose du;/du“ are known along
g = p*@) on u;, = wu,(u). By (5.9) the strip conditions d(du,/ou*)/dt =
(0%t /Op® 3u®) du®/dt imply

bos du’/dt = v™ d(du,./0u)/dt. (5.16)
Then b, fails to be uniquely determined along p* = p*(t) by (5.12) and (5.16) only if
(9as — M°q.0q.6)(dp”/dt)(du’/dt) = O. (5.17)
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This defines the characteristic directions du®/dt. By (5.14), if u,(u) are known, then
(5.15) is a linear partial differential equation for k¥ which also has the characteristic
directions (5.17). Equations (5.12) and (5.15) will be said to be of hyperbolic, parabolic,
or elliptic type wherever @ = det || gos — M°q..q5|| < 0, = 0, > 0. Hereafter (5.12)
and (5.15) will be assumed to be hyperbolic. Cohn [4] has constructed a double wave
of hyperbolic type and has also given simple canonical forms for the hodograph equa-
tions for both the hyperboli¢ and elliptic cases.
If s, is the arc-length of a characteristic, then (5.17) becomes

q*(dg/ds.)* = o, (5.18)
which is identical with (4.5). Hence

TureorEM 5.1: The characteristics of the hodographs of double waves are composed of arcs
of conically deformed Prandtl-Meyer epicycloids, i.e. of one-dimensional hodographs.

By (5.18) the component of ¢, along either characteristic is ¢, du®/ds, = +a/q =
+1/M. Hence

TaEOREM 5.2: On the hodographs of double waves the curves of constant speed and their
orthogonal trajectories bisect the angles between the characteristics.

Curves z* = z'(f) (other than prototype lines) in the physical space are mapped
onto curves u* = u”(t) on the hodograph. It is convenient to know the relation between
tangent vectors of a pair of corresponding curves. By (3.5), (5.3), (5.13), and (5.14)

(dz’/dt) (9u:/9u®) + [r()bas + k.apl(du’/dt) = 0 (5.19)
for some 7(f). Unless det || 7b.s + k,u || = O, this determines du®/dt. Conversely, if
the curve u* = u”(f) is given on a hodograph surface, its prototype is the ruled surface

a'(r, 1) = z®) + [r — ADW' (), (5.20)

where »* is a unit normal to the hodograph, z5(¢) is defined by (5.13), and A (f) by d4/dt =
v' dxg/dt (to make the curves r = constant orthogonal to the rulings). For (5.20) an
analog of (5.19) is

(9z/3t) (du;/ou*) + [(r — A)bug + k. apl(d’/dt) = 0. (5.21)
Since »* 82°/8t = 0, (5.21) implies
9z'/8t = — (8us/0p")g"’[(r — A)bas + k. upl du’/dt. (5.22)

In general, the direction of dz‘/dt will vary with r along a ruling, so (5.20) need not
be developable. This raises the question, what curves on the hodograph have developable
prototypes? Since d°z°/ar* = 0, (5.20) will be developable if and only if

det || 9x’/or,  ox'/at,  9°x’/oret|| = 0. (5.23)
Since »* and du;/du" are linearly independent, by (5.20) and (5.22) (5.23) is equivalent to
(Cbap + Dk, op) di’/dt = 0 (5.24)

for some C(¢) and D(t) not both zero. By (5.12) and (5.15)
(Gas — M?,00.6)(—=1)***(Cbasipsr + Dk, cs181) = 0. (5.25)
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Hereafter assume Cb,s + Dk, .5 # O for some o and 8. Then (5.24) and (5.25) imply
(5.17), i.e. u* = u*(?) is a characteristic.

Next, show that the prototypes of both families of characteristics are developable.
Let u* = p%(¢) define one characteristic from each family through a given point P of
the hodograph. At P, by (5.17)

2gas — M°q.aq.9) = (— 1) *P[(dus®"/dt)(dus™/dt) + (@uf*'/dt)(dps*/de)]f
for some f £ 0. Then by (5.12) and (5.15)

Das(dués/d0)(Aue/dt) = k,ap(dur/dt)(dul/dt) = 0, (5.26)

where e is not summed. Since these have non-trivial solutions du¢.,/dt, (5.26) implies
(5.24) for p* = p% and some C = C, and D = D, not both zero.

Now 1nvest1gate the relation between tangents to characteristics and unit normals
n! to prototypes x* = xi(r, ) of characteristics u* = p%(f). By (5.20) niy’' = n! dzi/or = 0
For some A

= A% 0u./dp”. (5.27)
Since n; dz:/8t = 0, then by (5.25) A%[(r — A)b.s + ko4 duf/dt = 0. Since z* =

z.(r, t) is developable, it must be possible to choose A% so that ni does not vary on a
ruling. Thus A% may be assumed independent of r, so

ADugdul/dt = Ak, opdul/dt = 0. (5.28)
If for some ¢(f) and d(¢)
det || cbas + dk,up || = 0, (5.29)
then by (5.26) and (5.28) A = gdu¢'./dt for some g. By (5.27)
= g(0u./0u%)(Aus,/dY), (5.30)

i.e. the tangent to u® = u¢,, is normal to the prototype of u* = u% . These considerations
and elementary calculation yield

THEOREM 5.3: If for a double wave det || cb.g + dk.up || # O for some ¢ and d, and if b,,
and k, .5 are linearly independent:

(1) The characteristics are the only curves on the hodograph with developable prototypes;

(2) The tangent at any point of a characteristic is normal, at poinis of the corresponding
ruling, to the prototype of the other characteristic through those points.

(8) The Mach cone at any point of the prototype of a characteristic is tangent to the
prototype.

(4) The streamlines intersect the prototypes of characteristics at the Mach angle.

For the omitted cases, first suppose det || b,s || = 0, which includes the case det
|| cbag + dk,op || = 0. Then the hodograph is developable, so one family of lines of
curvature consists of rulings. There exist b, such that b,s = b.bs . Suppose b, is non-
null. Let n* be a non-trivial solution of b,n* = 0. Then b’ = 0, so n* is tangent to
a line of curvature of curvature zero, i.e. a ruling. Since some b,5 5 0, the lines of curva-
ture of the hodograph are uniquely determined. On the other hand, by (5.12)
(gas — M?q.a0.6)(—1)*Pbosibgsr = 0, 50 (gus — M’q..q.5)n"n" = 0, and n° is a char-
acteristic vector. Hence one family of characteristics must consist of rulings. By Theorem
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5.1 a plane characteristic is a Prandtl-Meyer epicycloid, not a straight line. Hence
b, = 0, so b,g = 0, and the hodograph must be in a plane, which may be assumed to
be u; = constant. Thus prototypes of curves on the hodograph are cylinders, with rulings
parallel to the z*-axis. These are Busemann’s cylindrical flows. For p* = u, (3.2) and
(3.4) define the familiar Legendre transformation from the physical to the hodograph
plane for plane flow, and (5.13) takes the usual form

(0*8ap — Waug)(—1)**? 8°k/OUq .y dUg,; = O. (5.31)

Finally, suppose det || b,s || % 0, but b.s and k, .4 are linearly dependent. By (5.9)
and (5.14), for u, = u®, 8°us/du, dug and 9°k/9 u, dug are also linearly dependent.
Hence for some f(u, , u,)

O°k/du, dug = f 0*us/0u, dug . (5.32)

By (5.32)(9%us/0uq dug) (3f/0uy) = (3°us/0un0u,)(df/dus). Since det || 0°us/du, dug || #
0, then af/dus = 0. (5.32) yields

k=B — A'u,, (5.33)

where A* and B are constants. By (3.5) and (5.33) all prototype lines pass through
z' = A°. For each streamline S pass straight lines through 2° = A* and each point of
S. The cone so constructed will be a stream sheet covered by streamlines similar to S.
Accordingly such flows are said to be conical, a type considered by Busemann. The
most familiar example is Taylor-Maccoll flow.

TrEOREM 5.4: If for a double wave det || cbos + dk..p || = 0 for all ¢ and d, or if b.s and
k. .p are linearly dependent:

(1) The flow is conical or cylindrical.

(2) The prototype of any curve on the hodograph s developable.

(3) Conclusions (2) to (4) of Theorem 5.3 apply to these flows.

To every double wave that is neither cylindrical nor conical there corresponds a
conical flow with the same hodograph. Such general double waves will be called skewed

conical flows.
Reconsider the conditions for hyperbolic, parabolic, or elliptic type for (5.12) and
(5.15). They are sin x >, =, < 1/M, where x is the angle between the velocity and

the direction of a prototype line. For subsonic flow (5.12) and (5.15) must be elliptic.
In sharp contrast with plane flow, they need not be hyperbolic for supersonic double
waves. To see this, consider a supersonic cylindrical flow based on a subsonic plane flow.
Then (5.15) or (5.31) is elliptic.

6. Double waves with axisymmetric hodographs. An important class of examples can
be constructed as follows. Assume u; = u;(u) is axisymmetric about the wus-axis. The
hodograph may be represented by

u, = u(f) cos 0, u, = u(f) sin 6, us; = w(t) (6.1)

for some u(f) and w(f). If (6.1) is a curve, two possibilities arise. If w = 0, (4.5) implies
w'=¢" =d = (y — 1)c*/(y + 1), so (6.1) reduces to two points. If u and w are con-
stant, (4.5) implies a® = 0, i.e. (6.1) is the circle ¢ = ¢, w = constant. This is a singular

case of a velocity field with constant speed ¢ = ¢ in a vacuum.
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Next, suppose (6.1) is two-dimensional. Let u* = ¢, 4> = 6. Then by (5.8) and (5.9)
g = u'® + w,2; g2 = 0, 22 = uz,

bu

Ww” — ww)W?® + w72, (6.2)

bl2 — 0, b22 — uw/(uﬂ _|_ ,w;2)—1/2
where primes denote derivatives with respect to ¢ (5.12) implies
du(w'v’ — wu'’) + wid@Ww? + w?) — (wu' + ww'’)’] = 0. (6.3)

This has the singular solution ¢ = ¢, i.e. a spherical hodograph. It also has the solution
w = constant, i.e. the hodograph lies in a plane and the corresponding flow is e¢ylindrical.
Hereafter, suppose w is not constant. With no loss of generality, set { = w. Then (6.3)
becomes

a(wu’ — u® — 1) + (wu' + w)® = 0. (6.4)

This is a form of the differential equation for the hodographs of axisymmetric conical
flows, of which Taylor-Maccoll flow or a convergent flow considered by Busemann [3]
are particular examples. As stated at the end of Sec. 5, to these flows there correspond
skewed conical flows with the same hodographs. To construct examples, find the function
k(w, 6). By (5.14) and (6.2)

k. = 8°k/ow® — %[log (1 4 w'*)]9k/0w,

koo = 0°k/36° + [uw' /(1 + w'®)]0k/ow.
By (5.12), (5.15), and (6.2) bllk.22 - b22k,ll = O, SO
3%k/36° + (u/u'")’k/ow’ = 0. (6.5)

A skewed Taylor-Maccoll flow can be constructed, ¢n the small, by solving the ordinary
differential equation (6.4), the linear partial differential equation (6.5), and finding the
prototype lines (3.5). Thus, by relatively elementary processes a class of three-dimen-
sional solutions of the non-linearized equation (2.10) can be constructed.
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