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THE EFFECT OF INITIAL DEFORMATIONS ON THE BEHAVIOUR OF A
CYLINDRICAL SHELL UNDER AXIAL COMPRESSION*

BY

P. CICALA
Escuela Superior de AeroUcnica and University of Cordoba, Argentina

The theoretical investigation presented here concerns the effect of certain initial de-
formations on the buckling under axial compression of thin plate structures. A general
theory is developed and used to make approximate analyses of the complete cylinder and
curved panel. Two extreme cases of the curved panel are treated: (a) uniform longi-
tudinal shortening and, (b) uniform longitudinal stress. Particular attention is paid to
the possibility of inducing buckling in a favorable mode, and thus increasing the load
which a structure can withstand.

Introduction

The buckling of a cylindrical panel under axial compression has recently been the sub-
ject of a number of investigations using the non-linear theory of thin plates. This
theory is valid for deflections of the same order of magnitude as the thickness of the
panel.

The non-linear theory has shown that, for a panel with perfect initial form and
starting from the configuration of infinitesimal deflections which correspond to the
critical loads of the linear theory, buckling may evolve through one of several paths.
While some of these paths are favorable and give loads which increase with increasing
deformations, others cause the load to fall after buckling. This has been proved quanti-
tatively by von Karman and Tsien1 (1) and, independently, also by the author (2).

Experiments have shown that the effect of initial deformations is usually to cause
buckling in an unfavorable mode. However, Welter (3) has shown from compression
tests on curved panels, that it is possible to delay buckling by initially bending a panel
to a smaller radius than that at which it is tested. These results suggested the present
investigation.

The General Equations for a Cylindrical Shell with Initial Deformations

Let t' be the thickness of the shell and write t = t'/ \/l2(l — v2) where v is Poisson's
ratio. We call state "0" a state of deformation by which the mean surface takes the
form of a circular cylinder whose radius is R; let x and y be the axial and circumferential
coordinates, w the radial displacements (positive outwards), leading from state "0" to
the actual state "A".

Assuming that t' is small compared with R and that the displacements w have the
same order of magnitude as t', the normal and shearing stresses in state "A" may be
represented in the forms

„ _ Flf a _ m
x dy2' " ~ E dx2 ' E dx dy ' (1)

*Received August 28, 1950.
lumbers in parentheses refer to Bibliography at the end of the paper.
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where E is Young's modulus and / is a stress function. Similarly the stresses in state
"0" can be derived from another stress function /'. If the material is completely elastic,
the stress variation from state "0" to state "A" is related to stretching by the equation

V4(/ —/') + & = 0, (2)
where

(cfw _ l\ _ ( d'f V
dx2\dy2 R) \dxdy)'

The shell is held in state "0" by applying a certain distribution of normal pressure
Et'po , where p0 is, in general, a funnction of x and y; the quantity

1 d2 f /Q\
P=Po~RdJ (3)

will be zero if the shell is free from transverse shearing stresses in state "0". In general,
this will not be the case; the quantity Et'p' represents a net inherent pressure that adds
to the plate and membrane pressures in any state of the shell. Therefore, the equilibrium
condition in state "A", under the applied pressure Et'p yields

, , 2 74 d2wd2f (d2w \\d2f . _ d2w d2f ...
p _ p + z v w dx2 dy2 ydy2 R) dx2 + 2 dxdydxdy- ()

If the shell is free from stress in state "0", the functions /' and p' are both zero and
Eqs. (2) and (4) degenerate to the known equations for a shell having perfect initial
form and no initial stresses.

If a particular state w = w* exists for which the shell is free from stress when there
is no normal pressure, we may write

/' = k*, p' = -t2V4w*

where k* is the value for k when w = w*. Eqs (2) and (4) then take the respective forms

V4/ + k - k* = 0 (5)

2-—-4/- d2W d2f (d2W l\ d2f . _ d2W d2f
P - (V (w W ) dx2 dy* ( dlf R) + dx Qy dx dy "

These equations have already been presented by the writer (2). They have been used
by Dei Poli (4) in his studies on the cylindrical panel with initial deformations.

The Complete Cylindrical Shell with Initial Deformations

We consider the case of a cylindrical shell with the particular deformations represented
by

/' = 0
(6)

p' = px sin £ sin <p + p2 cos 2£ + p3 cos 2<p + Pi sin 3£ sin <p

with J = irx/a, <p = Try/b, where a and b are constants and irR/b is any integer. The
first of these equations states that the shell is free from stress in state "0". The con-
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strained sections of the shell are assumed to be so remotely situated that their influence
on the buckling process may be neglected.

To obtain an approximate solution to the problem of the shell under axial load, we
first express the functions / and w in the following non-dimensional forms

f/t2 = /i sin £ sin <p + f2 cos 2£ + /3 cos 2<p + /4 sin 3£ sin <p — t]y2/Rt,
(7)

w/t = sin £ sin <p + w2 cos 2£ + w3 cos 2<p + w4 sin 3£ sin <p + w0 .

The coefficient 17, which is positive for compressive axial loads, represents the ratio of
the mean axial stress to the critical stress <rc = —2Et/R derived from the linear theory.
The last term in the first of Eqs. (7) therefore relates to the mean axial stress.

To determine the values of the constants /x , f2 , /3 , /4 , , w2 , w3 and w4 , we use
the Galerkin method and evaluate the integral expressions

I* 2a /*2b /*2 a *2b

dx [V4/ + k]\px dy= dx p\p2 dy = 0 (8)
J0 J0 * 0 *^0

where for ipi and \p2 we replace successively the functions

sin £ sin <p; cos 2£; cos 2?; sin 3£ sin ip

In this way we obtain

D1/1 = — + 2w,w2 + 2wlw:i — 2w2w4 , (9)

32/32f2/a - -8P2w2 + w\ — 2wlwi , (10)

32a f3/ft2 = w\ + 9w\ , (11)

DJt = -9p2Wi - 2wlw2 + 18w3w4 , (12)

DiU\ = 2r)@2w1 + /32/i - 2wj2 - 2w2fx - 2wj3 - 2w3/, + 2w2ft + 2wJ2 + cx , (13)

16/32w2/a = 8vP2w2 + 4/32f2 - wjx + wji + wifl -f c2 , (14)

16cn2w3/p2 = -wji - 9wJt + c3 , (15)

DiWi = 18j)/32w4 + 9/32/4 + 2wj2 + 2w2fl — I8W3/4 — 18w4/3 + c4 , (16)

where

D'-(l+;)'• - (| + ¥)'■
a = a/ir-\/Rt, /3 = b/ir\/Rt,

Ci = cftfpi/wt3, (i = 1, 2, 3, 4).

Taking into account the equation

, 1 /dw\2 1 , . a2/ d2/
dz + 2\dJ i? ^ ay2 v dx2 (T)
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where u is the axial component of displacement, the mean axial negative shortening

€* = ial fxdx (18)
may be calculated. The condition of uniform shortening, requiring that tx be inde-
pendent of <p, is satisfied by Eqs. (7), when Eq. (11) is considered. Denoting by t the
constant value of ez , we obtain

eR/t = 2r] -j~ (w>i -f- 8wl -)- 9wl)/8a2. (19)
For a given initial deformation and given wave length, the constants c, are first

calculated from Eqs. (9)-(16) by replacing for the w's the values w[ , w'2 , w'3 , w{ that

1-5 Et/<5C
Fig. 1. Stress-strain diagram for the complete cylinder.

Line a (wi = w2' = 0). Line b (Wi = Wi' - 1/4). Line c (wi = 2, w2' = —1/4).
Line d (wi - 1/2, w2' = —1/16).

correspond to rj = 0. Then successive sets of values of 77, /1 , /2 , f3 , /4 , wx , w2 , w3 , wt
satisfying Eqs. (9)-(16) are to be found. The corresponding stress, waveform and
shortening can be deduced from Eqs. (7) and (19).

(a) First form of deformation equation

As a first step, we consider the case where

a = /3, w3 = w4 = /4 = 0

and hence disregard Eqs. (12), (15) and (16). In this case, the results obtained for a
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special value of /3 may be generalized by considering that the parameter /3 disappears
from the equations if the quantities

/,//34, /2//34, /3//S4, Wl/(32, w2/p2, cjtf, c2//36, (t,//32) - (2/04)

are introduced.
The results of the calculations for /3 = 2 are represented in Figs. 1 and 2. In Fig. 1,

values of 17 — a/ae are plotted against Et/<rc for various values of w[ and w'2. Considering

Fig. 2. Displacement components wi versus w%.

Line a (wi = w% = 0). Line c (wi = 2, W2' = —1/4). Line d {wi = 1/2, W2 = —1/16).
Line e (to/ = 1/32, Wz = 1/16). Line f (wi' = 1/32, w2' = 1/4).
Line g (wi = 1, W2' = —1/4). Line h (w/ = 1/4, w2' = —1/16).
Line i (to/ = 1/8, = —1/16).

the graph for a shell of perfect initial form (w[ = v)'2 = 0), 0 is the point at which buck-
ling begins: for this point, = w2 = 0 and 77 = 1. The lower branch of the curve through
B represents the unfavorable path with decreasing stresses and strains accompanying
the first phase of increasing deformations. The upper branch of the curve through A
represents the favorable path. If Hooke's law were obeyed and the curve followed
the upper branch, the behaviour of the shell would be practically unaffected by buckling.
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Figure 2 shows graphs of the deflection components Wi versus w2 for various initial
values w[ and w2 . These graphs are limited to positive values of w1 , since the diagrams
would be symmetrical with respect to the w2 axis. The graph for a shell with w[ = w2 = 0,
indicates that, for small values of Wj and w2 ,w1 ~ ±4w2; the positive sign corresponds
to the unfavorable branch of the curve in Fig. 1. A third possible state of equilibrium
would be represented in Fig. 1 by a horizontal line through 0; this corresponds to axially
symmetrical buckling with wl — 0.

From Fig. 2, the evolution of the buckled form of the cylinder may be traced for
various initial deformations, the corresponding stress-strain diagrams being given in
Figs. 1, 3 and 52. The graphs of vs. w2 in Fig. 2 are of two kinds: (a) those which
approach that branch of the line for a cylinder of perfect initial form which has positive
slope and, (b) those which tend to approach the —w2 axis; in any case they diverge
from line OA. From Figs. 1, 3 and 5, it may be seen that the first kind of initial deforma-
tion leads to an unfavorable path while the second kind indicates a rather favorable
behaviour with the load approaching the critical load of the linear theory. It will be
seen later that this latter possibility is fictitious.

(b) Second type of deflection equation

Calculations taking into account the w3 component of displacement and neglecting w4
and fi as before, have already been carried out (2) for the case of a cylindrical shell
with perfect initial form—that is, with Ci = c2 = c3 = 0. The effect of the w3 com-
ponent does not modify the results to any great extent. For example, the dotted line k
in Fig. 5 shows the stress-strain curve for = 2 and w[ = 1/32, w2 = 1/16, c3 = 0.
This curve does not differ substantially from the full line e which corresponds to the
same initial deformation, but with w3 and Eq. (15) neglected.

(c) Third type of deflection equation

The stress and displacement functions will now be expressed in the forms

f/f = /j sin £ sin <p + /„ cos £ sin <p + f2 cos 2£ + f3 cos 2<p — yy2/Rt,
(20)

w/t = Wi sin £ sin <p + wu cos £ sin <p + w2 cos 2£ + w0 .

The coefficients are determined from Eqs. (8) in which we write successively

= ^2 = sin f sin <p, = cos f sin <p, = cos 2£, rpi — cos 2<p.

By eliminating the coefficients /, we obtain for a — /3:

O yO2 A @ 30 , ^1 I 2 I £l 3/3 , ^'l I I 2 I Cii2,/j - 4 - T = - -y «, + -g + W, + - = -g-w, + T + w, + —

- (w\ — Wii) + - (w\ + Wu) + — ■

(21)

32w2 v 1 IU S 1 w2

The constants Ci , Cu and c2 depend upon the values w[ , w'n and w2 of the displacement
components when jj = 0.

Corresponding curves are marked by the same letter.
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It should be noted that the solution does not modify if the quantities Wi , wu , w2
are respectively replaced by wu , Wi , —w2 .

As before, calculations were made for /3 = 2. For the initial displacement com-
ponents (w[ = 1, w'u = 1/82, w'2 = —1/4), the stress-strain diagram is represented by
the full line in Fig. 3. Comparing this graph with line g, corresponding to

7 &/6c
Pig. 3. Stress-strain diagram for the complete cylinder.

Line f (wi = 1/32, wn' = 0, w2' = 1/4), or (wi = 0, wn' - 1/32, w2' = —1/4).
Line g (w/ = 1, w,,' = 0, w2' = —1/4).
Line g' and vector diagrams (0), (A), (B), (C), (D) of displacement components: (wi = 1, wn' = 1/32,

w3' = -1/4).

(w[ = 1, w'2 = —1/4) ? the effect of the additional displacement term is seen to change
the form from a favorable to an unfavorable one.

The evolution of the buckled form will be evident from the vector diagrams (0),
(A), (B), (C) and (D) in Fig. 3, which represent the displacements for the corresponding
points on the full curve. In these diagrams, the vector "02" represents the component
w2 , the horizontal and vertical components of the vector "01" represent respectively
Wi and wu . Diagram (0), corresponding to t? = 0, indicates that w' is negligible. How-
ever, as one proceeds from (0) to (D), Wu increases rapidly, while decreases. The
units for displacements are indicated on the diagrams.

Fig. 4 represents the deflections along a generator y = 0 or y = nb (n is any positive
integer), for points corresponding to those on the full curve in Fig. 3.3 The initial form

3The position of the line w = 0 with respect to the curves in Pig. 4 is of no great interest: the value of
wo in the expression for w is determined from the condition that the mean circumferential stress is zero.

The diagrams in Pig. 4 are drawn to such a scale that the quantity wi2 + wu2 is always represented
by the distance apart of the horizontal lines.



280 P. CICALA [Vol. IX, No. 3

in Fig. 4—graph 0—, almost symmetrical about the verticals x = — a/2, a/2, 3a/2,
etc., corresponds to the most favorable type. This symmetry is destroyed as the load
increases and, during the buckling, the form approaches the unfavorable type which has
a shape similar to graph (0), but with opposite signs for the deflections.

Fig. 4. Evolution of the deformation of a generator during the buckling process corresponding to line g'
in Fig. 3; w positive outward

Analogous results are plotted in Fig. 5. As before, the evolution of the three de-
formation components is represented vectorially. Starting with the initial diagram (0),
for which (w[ — 1/8, w'u = 1/32, w2 = —1/16), the vector diagrams (A), (B) and
(C) show, to various scales, the deformation components, in successive phases of buck-
ling, when — w2 has the values 1/8, 1/4 and 1/2. The corresponding points in the stress-
strain diagram fall approximately on curve e. Starting with the initial diagram (0'),
for which (w[ = 1/4, w'n = 1/32, w'2 — —1/16), in successive phases when — w2 has
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the values 1/2 and 1, the conditions represented by diagrams (D) and (E) are attained.
The corresponding points lie practically on the same curve e.

These results show that the behaviour of the cylinder, as calculated when the com-
ponents u>, , wn , w2 are considered, always approaches the most unfavorable path
between the one determined neglecting the w1 component and the one neglecting the
Wn component.

•5 1 Ee/oc
Fig. 5. Stress-strain diagram for the complete cylinder.

Line e (wi = 1/32, wn' = 0, Wz' — 1/16), or (wi = 0, wn' = 1/32, w2' = —1/16).
Line h, i (wi' = 1/8 -f- 1/4, wu' = 0, w% = —1/16).
Points A, B, C and vector diagrams (0), (A), (B), (C): (wi = 1/8, Wn' = 1/32, w-1 = — 1/16).
Points D, E and vector diagrams (0'), (D), (E): (wi = 1/4, Wn = 1/32, w>2' = —1/16).

The Curved Panel

The problem of a curved panel which is compressed in a direction parallel to the straight
sides is now considered. It is assumed that the straight sides y = 0 and y = b of the
panel are simply supported and free from normal stresses and that the strain along these
edges is constant (as if restrained by flexurally rigid, laterally and torsionally weak,
axially very stiff side-stringers). The boundary conditions for y = 0 and y = b are
therefore

3V = _ 2vt. (22)
dy2 dx2 ' dy2 R { )

The parameter rj represents here the ratio of the strain along the straight sides to the
critical strain obtained from the linear theory for a complete cylinder of which the
panel may be assumed to be a part.
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For the curved edges x = 0 and x = 2a, we assume perfect clamping and hence

- = fx = 0 <23>
for these edges; in addition, we assume that these edges are free from shearing stress
and write

a2/
dx dy

= 0. (24)

The problem is considered for two extreme cases: (a) uniform longitudinal shortening
and, (b) uniform longitudinal stress.

(a) Panel subjected to uniform longitudinal shortening

For the stress and displacement functions, we write respectively

f/S-Kt2 = (/, cos £ + f2 cos 2£ + /3) sin <p — wf/ZirRt,
(25)

w/3irt = [Wi(l — cos £) + w2 (1— cos 2Q] sin 95,

where £ = irx/a, <p = iry/b. These functions satisfy all the boundary conditions given
in Eqs. (22), (23) and (24). The condition of uniform axial shortening will be satisfied
in an approximate form by writing4

I b

(ex — «) sin <p dy = 0, (26)

where —ex is the axial shortening calculated according to Eqs. (17) and (18) and — e
is the edge value given by — e = 2r)t/R. Thus we get

a '■fjif = -2w\- 8wl . (27)
Furthermore, to determine the constants /x , /2 , f3, Wi , w2, we use the Galerkin method
and evaluate the same Eqs. (8) in which, in this case, the field of integration is defined
by the panel contour and for tp, , \f/2 we write successively the functions

(1 — cos £) sin <p, (1 — cos 2£) sin <p.

Thus, assuming f — 0, we obtain

D1/1 = 0V + 8w\ + 4wxw2 ,

D2f2 = tfw2 + 8u>2 + 8w!W2 — ! w\ ,

2nfwt = DlWl + 2a\Wl + tt>2)//32 + (02 + Km, - 4w2)f, (28)

+ (32w2 - 12wj)/2 - 8wj3 + Ci ,

2r)tfw2 = D2w2 + a2(wj + w2)/202 + ()32 + 16w2 + 81^)/2 - wj, — 8w2f3 + c2 ,

4By substituting an arbitrary function of <p instead of /3 sin ip in the expression for / and using e„ — e
to find the function, it is possible to satisfy exactly the condition that the shortening of all generators is
constant.
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where

- (i + !)"■ - (§ + fi-213

By elimination of /[ , /2 and /3 , from Eqs. (27) and (28) we obtain two equations in
Wi , w2 and i), and hence a fourth degree equation in wx and w2 . This furnishes corre-
sponding pairs of Wj and w2 and these may be used to determine the ratio 77 and the
axial shortening.

The load sustained by the panel, expressed by

N = V f <yt dy
varies with the section considered. We therefore define an equivalent mean stress a as
the stress which, when multiplied by the mean shortening and the volume of the panel,

-0-6 -O-t* -02 0 -2 Wf
Fig. 6. Panel subjected to uniform shortening. Shortening parameter 17 versus displacement

component wi .

represents the virtual work done by the forces applied to the panel for the displace-
ments corresponding to the actual deformation. It may be shown that, according to
the condition of uniform shortening, this gives

1 f2a
Ndx

and finally
<r Ac = v + 3 f3/P2 (29)
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~n MiX X \ w,'--o-i,w^o-o25
c / / \

I
0 1 2 Ec/Oc

Fig. 7. Panel subjected to uniform shortening. Stress-strain diagram.

Fig. 8. Panel subjected to uniform shortening. Displacement components io-> versus Wi .

Numerical calculations were made for a = 0 = 2 and the results are plotted in Figs.
6, 7 and 8; corresponding points and lines in the figures are marked with the same letters.

The curves and m3m4 in the figures apply to a panel with perfect initial form,
and the arrows on the curves in Figs. 6 and 7 denote points where the deflection com-
ponents wx and w2 are both zero. Of the four branches of the curves starting from these
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points, only m, gives a favorable characteristic. Favorable behaviour of the panel can
only be expected for initial deformations whose representative points fall on or near
the branch mx in Fig. 8. This indicates that favorable initial deformations are directed
outwards, with maximum values near the center of the panel.

Curves n, and n2 depart from the favorable path m,. and this phenomenon is similar
to that observed for a complete shell. Curve n2 departs immediately towards the large
deflection regime with little increase in the end load. However, the initial part of the

5
Fig. 9. Panel subjected to uniform shortening. Shortening parameter ri versus displacement

component wi .

nx curve corresponds to increasing loads, as shown in Fig. 7. After reaching a certain
point, the curve in Fig. 8 suddenly veers in the direction of the m4 branch. This phase
occurs with decrease of load but, before it occurs, the load reaches such large values
that stresses may be obtained in excess of the elastic limit of the material. For this
reason, the portion of the curve in Fig. 7 which corresponds to decreasing loads is
not shown.

Similar results were obtained from calculations made for a = 0 = 4, the various
graphs being given in Figs. 9, 10 and 11. From the points corresponding to = w2 = 0,
which are indicated by arrows in Figs. 9 and 10, the favorable path is . Line sud-
denly veers towards but, before it does so, very high loads are attained. Line q2 soon
approaches the branch p3 in Fig. 11 and indicates unfavorable initial deformations.

The dotted curves in Figs. 6 and 9 correspond to w2 = f2 = 0, when the second and
fourth of Eqs. (28) are left out.
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J/A

-1
^wj-o

J I 1 L
o 1 2 Et/6C 3

Fig. 10. Panel subjected to uniform shortening. Stress-strain diagram.

W1'Q-*,W£o.t

Fig. 11. Panel subjected to uniform shortening. Displacement components w2 versus «i .
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(b) Panel subjected to uniform longitudinal stress

The new boundary condition, replacing the one expressed by Eq. (26), is
<j2 r

~2 — —2r)t/R for x = 0 and x = 2a.dy

The parameter r\ represents here the ratio of the applied uniform stress to the critical
stress obtained from the linear theory for a complete cylindrical shell. The new con-

Fig. 12. Panel subjected to uniform longitudinal stress. Stress parameter rj versus displacement
component wi .

dition, as well as those expressed by Eqs. (22), (23) and (24) are found to be satisfied
by writing

//3x<2 = [/,(1 — cos £) + /2(1 — cos 2£)] sin <p — jjy2/3irRt,
(30)

w/3irt = [wi(l — cos I) + w2(l ~ cos 2|)] sin ip.

Proceeding as before, we obtain

DJi + 2 fa (/x + /2) = ~/32Wi ~ 12wJ — 16m>2 + 4,
2

D2f2 + 7^2 (/1 + /2) = ~P2w2 - 12^2 - - 8u>jtt>2 ,

(31)
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2

2i7/32Wi = Dm + 2 ^2 Oi + w2) - (/32 + 24^! - 4 m,)/i - (32w2 - 4w,)/2 + c, ,

2

2ti/32w2 = D2w2 + ^2 (wj + w2) - (/32 + 24u>2 + 8^) /2 - (8w2 - w^fi + c2 ,

with the same notation previously used.

a=/3=2
■2

W2

W^0-0i,,w2''0-01

»5/

rSt

■2 -4 Vf,
H 1 1 h

--0-1
Wj'sWgtQl

--0-2

-0-3

-Ok

Fig. 13. Panel subjected to uniform longitudinal stress. Displacement components wi versus Wi .

Calculations were made for a = /3 = 2 and the results plotted in Figs. 12 and 13.
Stress-strain diagrams were not plotted since the end displacement varies with the
particular generator chosen.
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The conclusions drawn for a panel with uniform shortening also apply to a panel
with uniform longitudinal stress. The arrows in Fig. 12 show the points corresponding
to zero values of w\ and w2 for a panel without initial deformations. Branches rl , r2 ,
r3 and r4 starting from these points correspond to the branches starting from the origin
in Fig. 13.

Curves r4 and s2 in Fig. 13 are practically coincident. The dotted curve in Fig. 12
is obtained equating w2 and/2 to zero and disregarding the second and fourth of Eqs. (31).

Conclusions

(a) The cylindrical shell under axial compression

An approximate analysis has been made of the behaviour of an axially loaded cylindrical
shell using a four-term expression for the stress function and also for the displacement
function. However, numerical calculations were generally made using three terms in

I | 7 f

Fig. 14. Lines of equal deflection of wave surfaces, according to eq. (10), for wz = Wi = 0, wi = 3.2w% .

the expressions for the stress functions and two in the expressions for the displacements.
The two terms retained are of the form sin (irx/a) sin (xy/b) and cos (2irx/a), since
previous experience has shown (2) that these terms are of greatest importance in the
first phase of the buckling process.

Three modes of buckling appear possible for a cylinder with perfect initial form.



290 P. CICALA [Vol. IX, No. 3

The most unfavorable one corresponds to the lower branch OB of the corresponding
curve in Fig. 1. In this case, the ratio of the amplitudes of the displacement components
is about 4. The generators of the cylinder which contain the crests of the waves in the
buckled form take a shape similar to that given by the curve (0) in Fig. 4 but with oppo-
site sign, that is, with flat tops directed outwards from the cylinder and sharp tops
directed inwards.

The curves formed by the intersection of the deflected surface with coaxial cylinders
of various radii are shown in Fig. 14;6 they refer to the case when the ratio of the ampli-
tudes is 3.2. The axis of the cylinder is vertical in Fig. 14 and it is evident that the
outwardly directed crests are elongated in the direction of the axis. This phenomenon
is often noticed in buckled specimens.

The favorable type of buckling whose stress-strain characteristics are represented
by the branch OA of the curve in Fig. 1, has generators of the form given by curve (0)
in Fig. 4. If this type of deformation could be ensured, the behaviour of a cylindrical
shell under axial load would be practically unaffected by buckling, and the stress-strain
curve would continue to follow the line representing Hooke's law.

The third type of buckling corresponds to an axial ly symmetrical configuration and
this would be represented on the stress-strain diagram in Fig. 1 as a horizontal line
through the point 0.

When the second deflection component in Eq. (7) is initially positive (that is, the
inward crests are sharper than the outward ones), under axial loading, the deformations
rapidly approach the most unfavorable form, no matter what the magnitudes of the
initial deformations may be. The stress-strain curves for various initial deformations
are given in Fig. 1.

When the second component in Eq. (7) is initially negative, it might seem possible
to produce a favorable mode of buckling. However, a more accurate analysis has shown
this to be impossible. If the first component is larger than the second, the magnitude
of the latter is further decreased by axial loading until it reverses its sign and gives rise
to the unfavorable mode of buckling. This is indicated by the curves c and d in Fig. 2.
If the first component is the smaller, the second component could increase under load
and lead to axially symmetrical buckling. However, this could only occur if planes
normal to the axis of the cylinder containing the maxima of the first component, also
contained the maxima of the second component. In reality this perfect coincidence
never occurs. Then, as is shown by the analysis based on Eqs. (20), a rapid relative
shift of the two components occurs. When the position of one component has changed
by half a wavelength with respect to the other, the deflected form is practically inverted
as indicated by the various curves in Fig. 4. The stress-strain curve for this case is still
unfavorable.

It may therefore be concluded that, irrespective of the initial deformations existing
in a cylindrical shell, buckling will always follow an unfavorable mode, with the stress-
strain curve rapidly approaching that pertaining to the lower branch for a shell of per-
fect initial form. With cylinders having initial deformations of wavelength about 2ir\/Rt,
it is impossible to improve the stress-strain characteristics.

6The radial distance from the intersection to the internally tangent cylinder is given on each curve as
a fraction of the difference in radii of the externally and internally tangent cylinders. The dotted curve is
the locus of points where the tangent plane is parallel to the axis of the cylinder.
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For wavelengths greater than 2x\/Rt, it may be shown that, at buckling, the stress-
strain curves start from a point for which 77 > 1 but that they fall rapidly to low minima.
Such initial deformations are therefore dangerous.

The possibility of using initial deformations to improve the stress-strain char-
acteristics of cylinders is only feasible for wavelengths considerably smaller than 2t \/Rt.
Such wavelengths might stiffen the shell and discourage the buckling. This possibility
is best investigated experimentally.6

(b) The panel under axial compression

The compressed cylindrical panel was analyzed assuming, as to radial displacements,
that the curved sides were clamped and that the straight sides were simply supported.
The expression chosen for the radial displacements contains two terms and Fig. 15

Fig. 15. Deformation of mid-generator, for a = 6; (a) according to eq. (32), (b) according to eq. (45).

shows the forms assumed by the middle generator for three ratios of the maximum
values of these terms.

Calculations were made for two special cases: (a) panel subjected to constant axial
shortening and, (b) panel subjected to constant axial stress. The conclusions drawn
from the two cases are the same. As for a complete cylindrical shell, the deformations
tend towards the unfavorable modes but it is possible for the critical load of the linear
theory to be exceeded before the beneficial effects of certain initial deformations are
nullified. The approximate analysis given in the Appendix shows that favorable initial
deformations may be obtained by initially bending a panel to a radius which is smaller
than that at which it is tested. This may be seen from the stress-strain curves nx and
q1 in Figs. 7 and 11 respectively, which correspond to the curve w2/w1 = 1/4 in Fig.
15(a); Welter's experimental results also indicate that a continuous and regular stress-
strain curve is possible. With proper experimental verification, the foregoing analysis
will serve to indicate how the behaviour of a compressed panel may be improved.

6For short cylinders, the barrel shape might be beneficial.
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Appendix

Initial deformations caused by clamping a panel in cylindrical grips.

In Welter's tests (3) some panels were bent to various radii and then tested in grips
of smaller radius. In order to estimate the initial deformations likely to have occurred
in those conditions, we consider the following schematic problem.

A rectangular panel whose sides are x = 0, x = 2a, y — 0 and y = b, is initially
bent to a shape w* = h sin <p and is then constrained such that the following boundary
conditions are imposed

w = ~ = 0 for x = 0, 2a; w = = 0 for y = 0, b.
dx ay

Making use of Eq. (5) and assuming small displacements, we write

V4(w — w*) = 0.

According to the boundary conditions, the solution takes the form:

w = _t—r h —-— [(sinh xo + Xo cosh xo)(cosh xo — cosh x)
smh xo cosh Xo + Xo

+ (x sinh x - Xo sinh Xo) sinh xo], (32)

where

x = t(x — a)/b, xo = Ta/b.

This equation gives an estimate of the initial deformations occurring when a panel,
initially bent to a cylindrical surface of small curvature, is clamped in grips, also of
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small curvature, but with a camber different by h from that of the panel. The deflections
obtained for a = b, for the generator y — b/2 are plotted in Fig. 15(b).

The condition encountered in Welter's tests were, of course, somewhat different
from the above. For example, the grips in the tests gave a large camber to the panels
and this would require the use of Eqs. (5) in their complete form. Rotation of the straight
edges was also restricted by the toothed guides. For these and other reasons, it is obvious
that the above is not a rigorous solution. However it will give an estimate of the initial
deformations which may be expected.


