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From Fig. 2 it may be noticed that although it is entirely possible to produce a
preserved pattern of finite separation both by an accelerated and a decelerated flow

Fig. 2. Variation of flow speed U with time t, according to Eq. (7), for accelerated (above) and
decelerated (below) flow.

field, yet to maintain such a flow pattern indefinitely, an accelerated field is never
adequate; the flow then must be a retarded one.

This analysis definitely rules out the possibility of preserving a finite wake in a
stationary flow field, or in any flow field that does not exactly follow the law of motion (7).
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THE BOUNDARY LAYER ON A QUARTER INFINITE FLAT PLATE*
By L. TRILLING (Massachusetts Institute of Technology)

This note discusses the incompressible boundary layer on the surface of a quarter
infinite flat plate in the absence of a pressure gradient, generalizing the classical two
dimensional Blasius solution [1] and Sears' extension to an arbitrarily yawed plate [2].
It shows that the flow retains free stream direction and Blasius profile at all points of
the plate, and that the projection of the constant velocity surfaces on planes parallel

*Reeeived May 21, 1953.
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to the plate are curves which become asymptotically parallel to the plate edges far
from the lead corner so that the Blasius and Sears solutions are asymptotic cases of
the solution given below.

Let the plate occupy the first quadrant of the X, Y plane with the lead corner at
the origin; let the free stream velocity vector be directed along the line X — Y = 0
(the results obtained in this case can easily be generalized to an arbitrary angle of ap-
proach by suitable stretching of the Y coordinate).

The equations satisfied by the flow in the resulting boundary layer are

Ux + V, + Wz = 0, (la)

UUX + VUY + WUZ = vUzz , (lb)

UVX + VVy + WVz = vVzz , (lc)

with the boundary conditions

U = W = V = 0 on the plate, (2a)

U = V = 2"1/2C7„ as Z —► °o. (2b)

If one seeks solutions of the form suggested by Sears and satisfying the boundary
condition (2b), namely with

U(X, Y, Z) = V(X, Y, Z), (3)
Eqs. (1) become

Uj + Ur + Wz = 0, (4a)

U(UX + Ur) + WUz = vUzz ■ (4b)

It is convenient to introduce the Blasius parabolic coordinates

x = Z(XV/UJ)-1/2, y = Z(YV/U„)~U2, (5a)

and the dependent variables
, N 2 l/2U , , 2 l/2WZ

u{x, y) = -jj— , w(x, y) = —-— • (5b)

The equations of motion then become, with r2 = x2 + if,

-rwr + w + | (x3uz + y\) = 0, (6a)

wrur — - (x*ux + y\) = r2u„ , (6b)

with the boundary conditions

tt(0) = = o, (7a)

lim u(x, y) = 1. (7b)
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Note that with y = 0, d/dy = 0, r = x, the flow becomes a Blasius flow since one has

xwx — w + | x3u, = 0, (8a)

wxux — ^ x3ux — x'uXI . (8 b)

Differentiating (8b) and substituting for w, wx from (8a, b), one obtains

{u" /u')' + u/2 = 0 (8c)

which is equivalent to the Blasius equation.
To reduce system (6a, b) to system (8a, b) in one variable, one must find a parameter

s(x, y) which satisfies the conditions

d d d d . .
sT = r^~ = xT~ + y~r~> (9a)dsdrdx dy

s3is = *3i + y3iy ^

In polar coordinates, the condition (9a) is satisfied if

s = rX(0), (10a)

while (9b) is satisfied if s = r\(9) is a solution of

x3sx + y3sy = s3 (10b)

or, using (10a),

X(cos4 6 + sin4 9) — X' sin d cos 6 = X3. (10c)

In terms of the new variables

a = cos 49, n — X2, (11a)

Eq. (10c) becomes

m(3 + a) + 2(1 - «V = 4m2. (lib)

A particular solution of this equation is

Mo = (1 - a)/4. (12)

The general solution can be obtained by substituting

n = F(a)n0(a) (13a)

into (lib). The function F(a) then satisfies the separable equation

2(1 + a)F' = F(F - 1), (13b)
so that one has:

F = [1 - c\l + a)wT\ (13c)
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where C is an arbitrary constant. When C = 0, one finds the solution n0(a). Substituting
(13c) into (13a) and (11a) and then (10a)

s = (l/2)r sin 20[1 — a cos 20]~1/2. (14)

Since s(r, 6) satisfies equations (10a, b), u(s), w(s) satisfy the Blasius Equation
(8a, b). Writing s in terms of physical coordinates, we have

r = Z[U„(x + y)/vxy]w2, sin 0 = (x/x + y)U2, cos 6 = (y/x + y)W2, (15a)

s = 2Z{U„/vYn[(x + y) - a(x - y)V'2. (15b)

The constant velocity surfaces are the surfaces s = const, since u = Bl(s). It remains
to determine the constant | a \ in such a way that as X/Y —* , s becomes proportional
to Z(Uc/vyy/2 so that one obtains the Sears yawed plate solution. This is the case if
a = —1, (x > y); a = 1 (x < y).

It follows that the present solution extends Sears' result up to the immediate corner
of the plate with no change. The constant shear and boundary layer thickness lines are
parallel to the axes up to the axis of symmetry. This indicates the existence of a narrow
regipn there where the cross flow terms in the velocity Laplacian are not negligible and
the boundary layer equations do not hold.
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NOTE ON MAXIMUM SHOCK DEFLECTION*
By GARRETT BIRKHOFF and JOHN W. WALSH (.Harvard University)

The angle X = \{M) of maximum shock deflection, for a given Mach number M
of flow, is of interest in various applications. It gives the critical angle for attached shocks
past a wedge [2, p. 53], and that for jetless wedge collapse [3]. We give here a new simple
means of determining \(M), for ideal gases, which seem simpler than the usual one
[1, §122],

We follow the notation of [2]. By formulas (4.3) and (3.3) of this reference,

a*2 , a*2 7 — 1 , 2 a2 ,,N
?2n = — and —a = + ——r — (1)

?ln 7 + 1 T + 1 ?ln

in a poly tropic gas, with p + p0 = Apy.
Now suppose we are given the velocity qi , relative to J, of one impinging stream,

and the shock angle /J between the impinging stream and the shock front, as in Fig. 1.
Of course, /3 is not known a priori; we shall seek, by variation of 0, that value of 13 which
maximizes the deflection angle 8, and thus obtain the desired maximum deflection

= X.
We suppose also that we know p, p in the impinging stream. Then the normal shock,
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