NOTES

where A is the shaded area shown in Fig. 1, i.e.

$$j_{+}(0) = \frac{1}{\pi T_{mf}} \tan^{-1} \left\{ \left(\frac{1-\gamma}{1+\gamma} \right)^{1/2} \right\}.$$
 (25)

For the process A_{γ} ,

$$j_{+}(0) = \frac{1}{\pi \tau_{0}(1-\gamma)} \tan^{-1} \left\{ \left(\frac{1-\gamma}{1+\gamma} \right)^{1/2} \right\}.$$
 (26)

As γ approaches one, $j_+(0)$ becomes infinite. This will be true not only for zero but for all x. The implication is plain. The Fokker-Planck process is a degenerate process in which the one sided current density of the system is infinite. A Fokker-Planck model for the velocity motion of a colloid particle would describe an infinite number of changes of direction of the particle per unit time. Such a model used to describe voltage fluctuations would imply an infinite number of polarity reversals per second. Since a process $A\gamma$ will afford the same correlation function and equilibrium distribution, and finite polarity reversal frequency, it is suggested that such a model may better describe noise, and that the number of zero crossings be regarded as an independent macroscopic physical quantity on an equal footing with τ_0 , E_0 .

The author thanks Dr. Franz Stumpers of Phillips Eindhoven and Dr. Edwin Akutowicz for their interest and encouragement.

EVALUATION OF CONSTANTS IN CONFORMAL REPRESENTATION*

BY SAMUEL I. PLOTNICK AND THOMAS C. BENTON (Pennsylvania State University)

In using the Schwarz-Christoffel transformation [1],

$$dz = K \prod_{i=1}^{n} (\zeta - \zeta_i)^{(\alpha_i/\pi) - 1} d\zeta = K f(\zeta) d\zeta$$

whereby the upper half ζ -plane is mapped into a simple connected polygon, the evaluation of the unknown constant K (if complex $K = ce^{i\lambda}$, c, λ real), is oftentimes tedious. We shall show a simple method of evaluating the unknown constant K by examples, proving first a

THEOREM: By the Schwarz-Christoffel transformation if ζ_i in the ζ -plane corresponds to two points P_i , Q_i in the z-plane and $\zeta = \zeta_i$ is a simple pole of $f(\zeta)$, then

$$K = \frac{\text{dist}(P_i, Q_i)}{\pi i R(\zeta = \zeta_i)}$$

R, denoting residue and dist (P_i, Q_i) , denoting the distance between the two points P_i and Q_i .

^{*}Received May 8, 1953.

Proof: Since

$$dz = Kf(\zeta) d\zeta$$

$$\int_{P_i}^{Q_i} dz = \text{dist} (P_i, Q_i)$$

$$= \lim_{\delta \to 0} \int_0^{\pi} Kf(\zeta_i + \delta e^{i\theta})i\delta e^{i\theta} d\theta$$

$$= K \lim_{\delta \to 0} \int_0^{\pi} f(\zeta_i + \delta e^{i\theta})i\delta e^{i\theta} d\theta,$$

where $\zeta - \zeta_i = \delta e^{i\theta}$.

Since f has a simple pole at ζ_i the Laurent expansion [2], is

$$f(\zeta) = \frac{R}{\zeta - \zeta_i} + g(\zeta)$$

with $g(\zeta)$ analytic near $\zeta = \zeta_i$. Now,

$$f(\zeta_i + \delta e^{i\theta}) = \frac{R}{\delta e^{i\theta}} + g(\zeta_i + \delta e^{i\theta}).$$

Therefore,

$$\lim_{\delta \to 0} \int_0^{\tau} f(\zeta_i + \delta e^{i\theta}) i \delta e^{i\theta} d\theta = \lim_{\delta \to 0} \left[Ri \int_0^{\tau} d\theta + i \delta \int_0^{\tau} \sum_{k=0}^{\infty} c_k \delta^k e^{(k+1)i\theta} d\theta \right]$$
$$= i\pi R$$

whence

$$K = \frac{\operatorname{dist} (P_i, Q_i)}{\pi i R(\zeta = \zeta_i)}.$$

Consider the transformation described by Milne-Thomson [3], whereby we map the infinite strip on the upper half ζ -plane. The Schwarz-Christoffel transformation gives

$$\frac{dz}{d\zeta} = K\zeta^{-1}$$
 or $z = K\int \frac{d\zeta}{\zeta} + L.$

L = 0 for z = 0 corresponds to $\zeta = 1$.

By the theorem,

$$K = \frac{\operatorname{dist} \left(P_{i}, Q_{i}\right)}{\pi i R(\zeta = 1)} = \frac{ai}{\pi i(1)} = \frac{a}{\pi}$$

In this case comparison of real and imaginary parts with infinities is avoided.

References

- 1. Zeev-Nehari, Conformal mapping, McGraw Hill, 1952, pp. 189 ff.
- 2. E. C. Titchmarsh, The theory of functions, 2nd Ed., Oxford University Press, 1950, p. 91.

3. L. M. Milne-Thomson, Theoretical hydrodynamics, 2nd. Ed., The Macmillan Company, London, 1950, p. 275.