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-NOTES-
A SUGGESTED MODIFICATION OF NOISE THEORY*

By JULIAN KEILSON (Massachusetts Institute of Technology)

Abstract. A class of stationary, equilibrium, Markoff processes is demonstrated all
of which have the same equilibrium distribution, W0 (x), and correlation function
R(t) = E0 exp {—t/rQ) differing from each other in the number of zero crossings of the
system per second. The processes are described by an integral equation characterized
by a parameter 7. As 7 approaches 1, the integral equation passes over into the Fokker-
Planck equation

dW d2W , d . Tm
To^T = Eo ~d?- + te(xW)-

Since the number of zero crossings per second of the system becomes infinite as 7 goes
to one, the degenerate nature of the Fokker-Planck process is made evident.

1. Introduction. Any stationary Markoffian motion of a system in one dimension
may be described by an equation of the form

dW^ = -W(x, t) J A(x, x') dx' + J W(x', t)A{x', x) dx', (1)

where W(x, t)dx is the probability of finding the system in the interval (x, x + dx) at
time t. A (x, x')dx' is the probability per unit time that the system if at x, will jump to
the interval (x', x' + dx'). Equation (1) describes the manner in which changes in local
probability density can occur. It is seen that

A
dt f W(x, t)dx = 0 (2)

so that probability is conserved.
The stationary Markoff character of the motion is assured by the formulation in

terms of a time independent transition function A(x, x'). By stationary Markoff is
meant that if at t — 0, the system is at x0 , its subsequent distribution is completely
described by the second order conditional probability:

W{x, t) = P2(x0 | x] t). (3)

For some A(x, x') the process will be an equilibrium process in the sense that

lim P2(x0 | x) t) = W0{x) (4)
t-* 00

is independent of x0 .
If A(x, x') is not localized about a; = x' the stochastic motion described is discontinuous.

The system jumps about from point to point. As A (x, x') becomes more localized about
x = x', the jumps become on the average smaller, i.e., the motion becomes "more con-
tinuous".

•Received April 7, 1953. The research in this document was supported jointly by the Army, Navy
and Air Force under contract with the Massachusetts Institute of Technology.
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In this paper a class of transition function A y (x, x') will be studied. It will be shown
that, as y —* 1 and Ay(x, x') becomes increasingly localized about x = x', the integral
equation (1) passes over into the Fokker-Planck equation

dW d*W d
"l-S'llr + aiW. (5)

The nature of the motion described by the Fokker-Planck equation as indicated
by this limiting process will be discussed, and the physical implications of this study
examined.

2. Properties of the integral equation. Consider the process described by the transi-
tion function

A(x, x') = (/3/7r)1/2 exp [—fi(x' - yx)2]. (6)
-*■ mf

Here, Tmf, the mean free time of the system, is independent of x, i.e.

J A(x, x') dx' = 1 /Tmf (7)

is the mean number of transitions of the system per unit time; /3 describes the dispersion
occurring at each transition. The larger /3, the more "continuous" is the motion; y is a
parameter describing the relaxation or damping of the system, i.e. if (x) is the mean
value of x,

(x) = J xW(x, t) dx (8)

then
d(x) __ -(x)

dt Tm,/( 1 - y) W

as is readily deduced from Eq. (1). The decay time of system is, then

t = Tm,/{ 1 — 7) (10)

The closer y is to one, the smaller is the damping and the longer the decay time.
t is also the correlation time of the system, for

R(t) = J W0(x0)x0P2(xn | x; t)x dx0 dx.

Since from (9) (x) = x0 exp ( — t/r), we have

R(t) = J W0(xo)xl exp ( — t/r) dx0 ,

i.e.

R(t) = E exp ( — t/r), (11)

where

E = J W0(x)x2 dx. (12)
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Equation (1) with A(x, x') given by (6) may be solved in the following way. Use
is made of the expansion

exp [—(a; - yy)2/{1 - 72)] = {[tt(1 - -y2)]1/2 exp [+(y2 - x2)/2]}.

,{y), (13)
0

where ^n(x) is the set of orthonormal Hermite functions

= (2^1/2) exp (x2/2)(—d/dx)n exp (—x2). (14)

Then

A(x', x) = exp (x2 - x'2)] ± yM«x)Uax'),

where

a =b3(1 - 72)]1/s.

In terms of

4>{x, t) = exp jj^- x2JlF(x, t)

P2(x0 | x; t) = exp (x2 - x2)

(15)

Eq. (1) becomes

^ ^ ^.(ax) \pn(ax')yn<t>(x', t) dx'.

If we expand <j> in terms of the orthonormal set al/2\p„(ax)

4>(x, t) = X) ana1/2i„(ax),
0

our equation separates into

  Qn 1 7

d* ~ T„ + Tmt ■ ■

If, at t = 0,
00

W(x, 0) = S(x - x0) = a4/ri{ax)xpn{ax0),
0

then

a„(0) = a'2 exp xlj\p„(aXo),

and

2 ^„(ax)\pn(ax0) exp [ —«(1 — yn)/Tm,]\. (17)
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We see that

lim P2(x o | x) t) = TF0(x) = w~W2a exp (—ax2)
£-♦00

= - 72;]i/2 exp [-0(1 - 7V] (18)

and

E — (x*) — [2^(1 — T2)]"1- (19)

3. Passage to the Fokker-Planck process. The Fokker-Planck equation, (5), con-
tains two parameters, the correlation time t0 and the equilibrium mean square, E0 = (x2).

Our transition function A(x, x') contains three variables r, E, y. Let us maintain
the values t = t0 , and E = E0 and permit y to pass through a set of values approaching
one. To do so we adjust Tm/ and 0 to the value of y through the equations

Tmf = r0(l " 7) (20)

and

^ = 2E„(1 - y2) ~ 4£0(1 - y)' (21)

These parameter values define a set of processes Ay all of which will have the same
equilibrium distribution and the same correlation function as the corresponding Fokker-
Planck process.

Indeed, the corresponding Fokker-Planck process is just the limit of the process
Ay as y —> 1.

This may be seen in two ways. First one may pass to the limit y = 1 in the condi-
tional probability function.

Since for the process Ay

r 1 - yn _ nlim ,
mf To

we have

lim P2y(x0 | x;t) = exp ^ (xl — x2)J X {afn(otx)fa(fxx0) exp (—nt/T0)

- w - «p exp <22)

and this is indeed the second order conditional probability of our equation (5).
It can also be seen directly that the integral equation passes over into the Fokker-

Planck equation.
The integral equation can always be rewritten formally* as a partial differential

equation of infinite order

dWi*l l) = (An(x)W(x, <)), (23)

*See p. 246 Keilson and Storer, Q. Appl. Math. 10, 243-253 (1952).
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where

An{x) = [ (x - x')nA(x, x') dx'. (24)
ni J

In the limit 7 —»1, Aj(a:) and A2(x) do not vanish, but all higher moments do vanish.
It is readily found that

Ai(x) = x/r0

and

.1 u) - (1 ~ 7)V i (1 ~ y2)E° > Eo
2 Tmf + 2 Tmr

The higher moments

An{x) = f {(1 - y)x + (yx - x')}n (^j exp [-/3(a;' - 7a:)2] dx'

contain terms

(1 - y)mx"((yx - x'Y),

where either m > 2 or p > 2. A simple examination reveals that all such terms go to
zero as 7 approaches one.

4. Zero crossings of the system A., . It is easily seen that the number of times per
second that the system with its motion characterized by A(x, x') will cross zero is given by

jM = [° W0(x) dx [ A(x, x') dx'
J —as J 0

_ (1 tJ— f C exp [—x2 _ y2 _ 270:^] dx dy
J — 00 *J 0

fA exp [-^(1 + 7) - T\ 1 - 7)] ds dt,

T

irTmf

(1 ~ 78)'/2

irTm,

Fig. 1
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where A is the shaded area shown in Fig. 1, i.e.

(25>

For the process A,

fentan-Mi^) I (26)

As 7 approaches one, j+(0) becomes infinite. This will be true not only for zero but
for all x. The implication is plain. The Fokker-Planck process is a degenerate process
in which the one sided current density of the system is infinite. A Fokker-Planck model
for the velocity motion of a colloid particle would describe an infinite number of changes
of direction of the particle per unit time. Such a model used to describe voltage fluctua-
tions would imply an infinite number of polarity reversals per second. Since a process
Ay will afford the same correlation function and equilibrium distribution, and finite
polarity reversal frequency, it is suggested that such a model may better describe noise,
and that the number of zero crossings be regarded as an independent macroscopic
physical quantity on an equal footing with t0 , E0 .

The author thanks Dr. Franz Stumpers of Phillips Eindhoven and Dr. Edwin Akuto-
wicz for their interest and encouragement.

EVALUATION OF CONSTANTS IN CONFORMAL REPRESENTATION*
By SAMUEL I. PLOTNICK and THOMAS C. BENTON (Pennsylvania State University)

In using the Schwarz-Christoffel transformation [1],

dz = k n a - r.)(ai/T>-ftr = Km df* = i

whereby the upper half f-plane is mapped into a simple connected polygon, the evaluation
of the unknown constant K (if complex K = ce'x, c, X real), is oftentimes tedious. We
shall show a simple method of evaluating the unknown constant K by examples, proving
first a

Theorem: By the Schwarz-Christoffel transformation if in the f-plane corresponds
to two points P{ , Qi in the z-plane and f = f,- is a simple pole of /(f), then

K dist (P.- , Qj)
«7?(f = f.)

R, denoting residue and dist (P<, Qi), denoting the distance between the two points P{ and Q,.

*Received May 8, 1953.


