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in which C and C’ are real and positive, is the flow across a rectangular grid. The cross
sections of the bars far from the intersections are roughly circular, particularly if b is
large compared with C, and d is large compared with C’.

The flow corresponding to

Flo) = C*,  G(B) = DB, HG() = BEv’,

is one for which the coordinate planes are not pierced by streamlines and are therefore
“streamline surfaces’” perpendicular to equi-potential surfaces.

Three-dimensional flows constructed by the present method belong to a special
class, of which two-dimensional flows form a sub-class. Axisymmetric flows, however,
do not belong to this class.

The reviewer of the original manuscript of this paper suggested that the expressions
of the velocity components in terms of the complex conjugates of f, g, and h be also
given. If the latter are denoted by f’, ¢’, and h’, then the Cauchy-Riemann equations are

fo=f fi=-fi5 e=9, ¢=-g¢; h=hk, h=-hk (6
and one has, from Eqgs. (1), (4), and (6):
w=h—-f,, v=fi—-9¢g, w=g, —h. @
In vector form, Eq. (6) can be written as
V= —curlA
in which

A = ig’ + jb’ + kf’
(i, j, and k being unit vectors along the coordinate axes) is the vector potential for the
flow for which ¢ is the scalar potential.
It may be remarked without further discussion that two-dimensional potential

flows which are not parallel to mutually perpendicular planes can also be superimposed
to form a three-dimensional potential flow.

A NOTE ON THE MEAN VALUE OF RANDOM DETERMINANTS*
By RICHARD BELLMAN (The Rand Corporation)

1. Introduction. In a recent paper, [1], Nyquist, Rice and Riordan discussed the
problem of determining the expected values of powers of a random determinant. Here
a random determinant, D, , is defined to be

Dn=|x¢i|) i’j7=1y2:°")ny

where the z;; are independent random variables.

The purpose of the present note is to give an explicit representation for E(D%) in
terms of the characteristic functions of the z;; . These need not be identical.

At the moment we are merely interested in presenting an expression which will

*Received Dec. 14, 1954.
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yield a systematic technique for obtaining the moments numerically. In a subsequent
paper devoted to various theoretical aspects such as asymptotic behavior we shall
discuss the problem in greater detail. For the case of identical distributions, the problem
is closely connected with the study of invariants of the symmetric group. The operator
we employ below is related to the operator of Capelli discussed in Weyl’s book on the
classical groups.

2. A useful operator. Let us consider the operator 0, defined as

9,. = la/az,,, I, k, 1= 1, 2, re N, %y (2.1)

where the z,, are independent variables. Thus

6, = a/az" B
d 4 d 9
92 - azn azzz - 8212 azzl ’ (2.2)
and so on.
Let X represent the matrix (z,;) and Z the matrix (z,;). Then we have

exp [ir(XZ")] = exp (¢ Z Tei2k1) 2.3)

(Here Z” is the transpose of Z, and tr (Z) is the trace of Z).
The basic identity we shall employ below is

6*[exp [itr(XZ™)]] = ™ D: exp [itr(XZ")), 2.4

fork =1,2, ... **
3. E(D;). Taking the expected value of both sides in (2.4), we obtain the result

o TT oute | = (D} exp litn(x27), (3.1

where

ou2) = [ e dGu(a), 3.2)

is the characteristic function of the random variable z,; . Setting z,, = 0, we obtain the
result

i"E(D;) = 9;[,,11 ¢,,.(z,‘,)] (3.3)

2kl =0

4. Identical distributions. If the variables are identically distributed and symmetric
about zero, we may write :

é(zn) = exp (azn + a2 + ), (4.1)
obtaining as a consequence in place of (3.3) the result
i™E(D:) = O%[exp (a, ;zf, + a, ,‘z;zt, 4+ - )]ii=o (4.2)

**This is a well-known device in the theory of matric automorphic functions.
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From this representation the value of E(D%) may be obtained by retaining in the above
expression only the terms that yield a non-zero value after z,, has been set equal to zero.
A particularly interesting case is that where z,; = =1 with equal probability. Then

"*E(D}) = Of.l: fI (cos z,‘,)jlm_o. 4.3)

k., l=1
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AN INEQUALITY FOR THE FIRST EIGENVALUE OF AN ORDINARY
BOUNDARY VALUE PROBLEM*

By PHILIP HARTMAN axp AUREL WINTNER (The Johns Hopkins University)

Let both coefficient functions of the differential equation

Yy’ + 9@y + @y =0 (1)
be real-vglued and continuous on the interval e < x < b and, unless g’(z) is not involved
(as it is not in (4) below), suppose that the coefficient of y’ has a continuous first de-

rivative ¢'(z). Consider the boundary condition

ya@ =0, yb =0 2)
A solution y(z) of (1) satisfying (2) is the trivial solution,
y(z) = 0. @)

In what follows, conditions on the function pair (g, f) will be considered which assure
that (1) has no solution y(xr), distinct from (3), satisfying (2).
Such a condition is known to be

;=0 (4)
(with an arbitrary g). Another such condition is
| f=1g <o (5)
Still another one is
f—g¢ <0 (6)

(It is understood that each of these three conditions is required for all values of z on the
interval a < z < b.) Actually, the sufficiency of (4), (5) and (6) is contained in the
results of Paraf, Picard and Lichtenstein, respectively, on (elliptic) partial differential
equations [1]. The method proving the sufficiency of Lichtenstein’s condition (6) is
quite different from that proving the sufficiency of Picard’s condition (5) or of the more
primitive condition (4), and it is clear that no one of the three conditions (4)-(6) need be
satisfied if the other two are satisfied.
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