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Correction to my paper

A NEW SINGULARITY OF TRANSONIC PLANE FLOWS*
Quarterly of Applied Mathematics, XII, 343-349 (1955)
By A. R. MANWELL (University College, Swansea)

A much more detailed study of the singular solution discussed rather briefly in the
note of the above title has shown that several statements in Sec. 4 are incorrect. Briefly,
the expansions (4.4) and so also (4.5), (4.6) are valid only locally for either 0 = 0 or for
0 = x, but not necessarily for both. We may not infer from these expansions the existence
of solutions in the whole interval (0, tr). (In particular, on account of the pole at Z = 1,
we may not replace in (4.3) a contour for which Z — 1 = 2i exp (t'0) sin 0 is very small
by the unit circle Z = 1).

A correct discussion shows that (4.3) and (4.4) yield only two independent solutions.
As a consequence, the singular solution can be smoothly continued across the sonic
line for 0 > 0 but, unless we admit further singularities in the supersonic region, the
flow would not join up smoothly for 6 < 0. Since we are seeking possible criteria for
the breakdown of flow solutions, this correction leads to a slight strengthening of our
original conclusion.

'Received March 7, 1955.

A MINIMUM PRINCIPLE OF PLASTICITY*
By D. TRIFAN (University of Arizona)

This note is concerned with the removal of a certain restriction imposed by a proof1
[Sec. 5] of a minimum principle of an isotropic, incompressible, strain-hardening material
exhibiting a gradual transition from the elastic to the plastic state. The governing stress-
strain relation for loading is given by

s* = 2G0t* p(E)tijE*, (1)
•Received Feb. 28, 1955.
'Section numbers enclosed in brackets refer to the following paper: D. Trifan, A new theory of plastic

flow, Q. Appl. Math. 7, pp. 201-211 (1949).
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and for unloading by the differentiated form of Hooke's law
s* = 2Gae* . (2)

Variables with asterisks indicate rates of change with respect to any monotonically
increasing function such as, for example, time. The stress deviation rate s* is defined
in terms of the stress rate a* by s* = a* — —where repeated indices indicate
summation in accordance with the summation convention of tensor calculus, and <5,,
the Kronecker delta—e,,- is the strain tensor, E = , G0 is the shear modulus in
the elastic range, and p = p{E), a positive definite function depending on the material
and satisfying the inequality Ep(E) < G0 [Sec. 2],

Let a set of primed strain rates «*' be called admissible strain rates if they are derivable
from a set of velocities u*' by the relation e*,' = §(w*,' + where it*' = du*'/dx,- ,
and the velocities in turn satisfy the incompressibility condition, given by = 0,
and the boundary condition, given by surface velocities u* , i.e., nf = u* on the surface.
The corresponding admissible stress deviation rates s*,' can be determined, for a given
state e,, throughout the body, by Eq. (1) when E*' - > 0, and by Eq. (2) when
unloading occurs, E*' < 0 [Sec. 2], The actual strain rate e* existing in the body is an
admissible strain rate whose corresponding stress rate a* satisfies the equations of
equilibrium <r* ,, = 0.

Minimum principle. For any admissible set of strain rates and corresponding
stress rates, the integral </(«*,') = jV t*WV, dv is an absolute minimum for the actual
strain and stress rates occurring in the deformed body, i.e.,

mw - J(<t) > o.
Equality holds only if tVi = t* .

Proof. Due to the incompressibility condition = 0, the following contracted
tensor products are equivalent e*'a*' = , and thus by Eqs. (1) and (2) the integrals

and J(t*) become

«/(**') = 2G„ fv WJ dv-\ fy p(E) {E*'}2 dv, (3)

J(e*) = 2 G0 dv- | p(E) \E*}2 dv. (4)

The sub-domains of volume V where loading and unloading occur are indicated by
plus and minus subscripts respectively. In general the actual sub-domains V+ and F_
are not known; however, for admissible strain rates V' indicates the sub-domain where
E*' > 0, and VL the sub-domain where E*' < 0. It is evident that the second integrals
in (3) and (4) are to be integrated over the loading domains only. It is necessary to
consider the portion of the volume where actual loading occurs while admissible strains
indicate unloading; this we denote by F+_ . The sub-domain F_+ indicates actual un-
loading while admissible strains assume loading.

It is convenient at this point to introduce the following notation2:
u*' = (u*' — u*) + u* = Am* + m* ,
«1/ = (el! - «*) + = Ae,* + ,

E*' = (E*' - E*) + E* = AE* + E*,
  v; = F+ + F_+ - F+_ .

2The author is indebted to H. J. Greenberg for this suggestion.
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Integral (3) now becomes

= 2G„ J (At* At* + 2At*t* + tfiefi) dv

-jf ({AE*}2 + 2 AE*E* + {E*\2)p(E) dv4 JV+

"! L + *+! fv+ <*>• (5)
Since

f s*Ae* dv = f a*At* dv = [ <t*(Am*),,- dv = f (a *A?<*),,- cfc
J 7 «> V •'V J V

= f <r*Au*nj dS = 0,
J s

due to the incompressibility condition, strain rate—velocity relation, symmetry of the
stress rates, equations of equilibrium, divergence theorem, and the fact that Au* = 0
on the surface, it follows by Eqs. (1) and (2) that

2G0 [ t*At* dv - § [ E*AE*p(E) dv = 0. (6)
J v 4 J v+

A simplification of integral (5) is possible with the application of (4) and (6)

- J(**) = 2G0 jv At*At* dv - | {AE*}2p(E) dv

~lfy \E*'}2V(E) dv + \ \E*'\2p(E) dv. (7)

In V-+ it is evident that {AE*}2 > {E*'}2, and since V_+ is included in F_ ,

[ \E*'\2V{E) dv < f {AE*}2p(E)dv<[ {AE*}2p(E) dv.
Jv-+ JV-+ Jv-

This inequality applied to (7) in conjunction with the positive character of the integral
over F+_ reduces (7) to

J(A'd ~ J(*t) > 2G0 At*At* dv-^f \ AE*\2p(E) dv. (8)

By means of the Schwarzian inequality

so that
{AE*}2 = || SiiA4,*]2 < f t^At^At* = | EA(*A(* ,

JUVi) - J (f *) >2 [ {Go- Ep(E)}AttAt* > 0.3
J V

It has been assumed in this proof that e*J ^ e* . The case when t*' = e* is trivial
and leads to the equality in the minimum principle.

3In [Sec. 5] it was necessary to assume that E*' > 0 whenever E* > 0, i.e. no V+_ domain, in order
to obtain this result.


