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The bracket in Eq. (4) is positive, if the speed increases as one moves from P in the
direction of the resulting velocity to a neighboring point P, on the stream line through P.
If the images of the points P and Pi in the hodograph plane are denoted by P" and
P[', the bracket in (4) is therefore positive, if P" is closer to the origin 0" of the hodo-
graph plane than PAs the signs of u and v are readily determined, we have therefore
a convenient criterion for the sign of the right-hand side of (4), that is for the sign of
the plastic power. For a steady flow, in particular, this criterion requires that the particle
that is instantaneously at P should be accelerating or decelerating according to whether
u and v have the same signs or not.
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NECESSARY AND SUFFICIENT CONDITIONS FOR THE EXISTENCE
OF NEGATIVE SPECTRA*

By C. R. PUTNAM (Purdue University)

Let jit) be a real-valued continuous function on the ^-interval 0 ^ t 5= 2T and let
x = x(t) be a real-valued solution (^ 0) of the differential equation

x" + f(t)x = 0. (1)

If f+ — S 0I" 0 according as / 2; 0 or f < 0, and if x(a) = x(b) = 0, where a < h, then
there holds the inequality

[" f+(t)dt> 4/(b - a), (2)
J a

due essentially to Liapounoff (see [1]; also [8]). Moreover, according to [4] (see also [1]),
the constant 4 of (2) is the best possible, in the sense that (2) need not hold (for arbi-
trary /) if the 4 is replaced by 4 + e, where e > 0. Hence, it is easy to see that the
inequality

T LT«) + r (27' - t)]dt (= T [J f(t) dt) > 2 (3)

is necessary, but T flr f+(t) dt > 2 + e is not, in order that the Sturm-Liouville boundary
value problem

L(x) + \x = 0 [L{x) = x" + fx], x(0) = x(2 T) = 0 (4)

possess an eigenvalue X < 0 (or even g 0).
It will be shown in this note that there is a sufficient criterion similar to (3). In fact,
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the following will he proved: If f(t) satisfies the inequality

M(j) = T-1 f e{f(t) + f(2T - t)] dt > 2, (5)
Jo

then the spectrum of the boundary value problem (4) possesses some eigenvalue X < 0.
Furthermore, the constant 2 occurring on the right sic'e of (5) is the best possible in
the sense that for every e > 0, there is a continuous function /(t) satisfying M(J) >2 —
and such that the values X in the spectrum of the eigenvalue problem (4) satisfy X > 0.
(Note that the similarity between (3) and (5) is particularly apparent if f(t) 3: 0, so
that f = f*.)

If one grants, for the present, the italicized assertion, the proof of the claim following
it is easy. In fact, let a continuous function /(t) be defined on 0 ^ t ^ 2T so that /(<) 2: 0
and so that

| -2T j
2 - € < M(f) <2-6/2 and j M(f) - T f(t) dt < e/2. (6)

.'0

Clearly this can be done; one need only define / to be 0 everywhere on 0 ^ ^ 2T
except on some sufficiently small interval about T. Then the spectrum of the boundary
value problem (5), for the above constructed /, consists of positive eigenvalues only.
In fact, if there were an eigenvalue X | 0, there would exist a solution x(t) ^ 0 of (1)
satisfying x(0) = x(7\) = 0, 0 < 7', :£ 2T. Consequently, relation (2) for a = 0 and
b = T, would now imply (3), that is T flT f(t) dt > 2, in contradiction with (6).

There remains then to prove the italicized assertion. To this end, suppose, if possible,
that there does not exist a negative eigenvalue, so that, in view of the Parseval equality,
the relation

f2 (x'2 - fx2) dt = - f xL(x) dt = £ \kC\ ̂  0 (7)
Jo Jo

holds for all real-valued functions x possessing continuous second derivatives on
2 T and satisfying x(0) = x(2T) = 0. Here, the constants ck are defined by

ck = Jo' x<t>L dt, where <f>k is the normalized eigenfunction belonging to the eigenvalue Xt .
(In connection with (7), see [3], p. 392 and the reference given there to Hamel [2]. For
applications of an inequality similar to (7) but relating to singular boundary value
problems [7] on the half-line 0 ^ t < °°, see, e.g., [5], [6].) Next, define the continuous
function y(t) on 0 ^ t g 2T by putting y(t) = t on 0 ^ t ^ T and y(t) = 2T — t on
T ^ t g 2T. (See [1], p. 69.) Then

2 T T T

[ (y'~ - fy2) dt = 2T - [ ff(t) dt - f (2T - tff(t) dt.
Jo Jo j T

It follows from (5) that

Cy'2 - fy2) dt < 0.I
Clearly, the function y can be approximated by functions x which possess continuous
second derivatives on 0 ^ i ^ 2T, satisfy x(0) = x(2T) = 0, and which violate the
inequality of (7). This violation yields a contradiction and shows that the assumption
that the spectrum contains no negative eigenvalues is untenable. The proof of the
italicized assertion is thus complete.
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Correction to my paper

A NEW SINGULARITY OF TRANSONIC PLANE FLOWS*
Quarterly of Applied Mathematics, XII, 343-349 (1955)
By A. R. MANWELL (University College, Swansea)

A much more detailed study of the singular solution discussed rather briefly in the
note of the above title has shown that several statements in Sec. 4 are incorrect. Briefly,
the expansions (4.4) and so also (4.5), (4.6) are valid only locally for either 0 = 0 or for
0 = x, but not necessarily for both. We may not infer from these expansions the existence
of solutions in the whole interval (0, tr). (In particular, on account of the pole at Z = 1,
we may not replace in (4.3) a contour for which Z — 1 = 2i exp (t'0) sin 0 is very small
by the unit circle Z = 1).

A correct discussion shows that (4.3) and (4.4) yield only two independent solutions.
As a consequence, the singular solution can be smoothly continued across the sonic
line for 0 > 0 but, unless we admit further singularities in the supersonic region, the
flow would not join up smoothly for 6 < 0. Since we are seeking possible criteria for
the breakdown of flow solutions, this correction leads to a slight strengthening of our
original conclusion.

'Received March 7, 1955.

A MINIMUM PRINCIPLE OF PLASTICITY*
By D. TRIFAN (University of Arizona)

This note is concerned with the removal of a certain restriction imposed by a proof1
[Sec. 5] of a minimum principle of an isotropic, incompressible, strain-hardening material
exhibiting a gradual transition from the elastic to the plastic state. The governing stress-
strain relation for loading is given by

s* = 2G0t* p(E)tijE*, (1)
•Received Feb. 28, 1955.
'Section numbers enclosed in brackets refer to the following paper: D. Trifan, A new theory of plastic

flow, Q. Appl. Math. 7, pp. 201-211 (1949).


