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values

1 i; h(P) (» = i,2, •••)

are majorized by a single integrable function H(P). Therefore, to formula (24) we apply,
not Lebesgue's theorem, but Fatou's theorem. Using the inequality (22), we find

f | HP) I < lim / U t, UP)
n—*oo J I 1

< €.
(28)< ljmi E / I UP) I = / I UP)

n—»oo

Combining our results, we find

I / MP) - f <p(.P) = j f gm - I x(P) + / Ai(P) - / ^(P) |

< | / (7.(P) - / X(P) | + / I *i(P) I + / I ̂ (P) I
< 0 + € + e. (29)

Letting e —>• 0, we obtain the required result //i(P) = JV(P).
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SIMULTANEOUS IN VARIANCE OF GENERALIZED SPHERICAL
HARMONICS UNDER THE OPERATIONS OF TWO ROTATION

GROUPS*
By R. N. D'HEEDENE (Cornell University)

Abstract. A method is found for evaluating the coefficients of a sum of generalized
spherical harmonics so that the sum will be simultaneously invariant under two rotation
groups. The coefficients for a sum of ordinary spherical harmonics invariant under
each individual group must first be known.

*Reeeived May 15, 1957.
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If a rigid molecule is situated in a lattice, free to rotate but not displace, the mole-
cule's potential energy V, a function of its rotational position, must have certain sym-
metries, dictated by the symmetry of the molecule and the symmetry of the lattice. In
this paper a consequence of these symmetry properties of V is discussed.

Let the position of the molecule be described by the three Eulerian angles (6, </>, \p),
of which d and 4> are the polar coordinates of a z-axis fixed in the molecule with respect
to an (X, Y, Z) system of coordinates fixed in the lattice, and * describes the rotation
of the molecule about z\ Let there be a group G of rotations of (X, Y, Z) describing the
symmetries of the lattice, and a group H of rotations of (x, y, z) (the molecule-fixed
coordinates) describing the symmetry of the molecule. Suppose V (6, <j>, ip), the potential
energy, is expressed as a series of generalized spherical harmonics (often called the
symmetric top eigenfunctions),

vy,*,*) = E E E c?my? \6,4>,*). (i)
j-o K--J M--J

Then the requirement that V be invariant under each operation in G or H will place
certain restrictions on the constants Cf'M (the higher the symmetry expressed by G
and H, the more of them will be zero). We wish to determine these restrictions.

Instead of using the real triplet (0, </>, *) to represent Eulerian angles, we will use
the complex doublet (or spinor) (£, ?j) where

0
£ = exp [-t'(</> + *)/2] cos ^ ,

(2)
Q

V = exp [i(4> - id/2] sin - ,

or even more simply, the matrix, F, where

r = ( " " ]• (3)

In this notation, if (x, y, z) is given by and (xy', z') by r2 , each with respect to
(X, Y, Z), and (x\ y', z') by T with respect to (x, y, z), then the relation between the
angles is

r2 = r,r, (4)
an easy result, but one involving some arithmetic2.

We will write the generalized spherical harmonics as Yf'M (T) where T indicates
the argument (6, <f>, *) of Y.

Note that we may consider (4) as giving the transformation under T of the Eulerian
angles r\ into . That is, T represents a rotation R (r) in H, under which T, —> Ta
gives the transformation of the Eulerian angles describing (x, y, z) with respect to
(X, Y, Z). An important result is that under such a transformation,

j
R{y)Yj'm(y1) = r?-w(r2) = E ^"?(r,)F/-w(r) (5)

•See Goldstein, H., Classical Mechanics, Addison-Wesley, 1953, p. 107 for an excellent figure show-
ing the Eulerian angles.

2Takahashi, T., J. Phys. Soe. Japan, 7, 307 (1952).
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gives the transformation of the generalized spherical harmonics2. Letting Fy(T) be a
square matrix with elements Ff'M(r), (5) may be written as

flCrmtr.) = F,(r2) = F,(r,)F,(r). (6)
The transformation matrix elements for ordinary spherical harmonics are the same as
those for generalized spherical harmonics: using essentially the same notation,

R(t)Yj(et ,*,) = y«(02 ,«2) = E Y'A9x r) (7)
s

is a well known result3.
The above equations express transformations under a rotation i2(T) in II. For a

transformation R(T') in G, the situation is slightly different. If we let R(r') (X, F, Z) =
(.X', F', Z'), and Tj , r2 locate (x, y, z) with respect to (X, Y, Z), {X', Y', Z'), respect-
ively, then as we see by applying (4) and considering (X', Y', Z') as the (X, Y, Z) of
equation (4), we have

r2 = (FT'r, (8)
(exponential-1 indicates inversion) replacing (4), so that

/?(r')F,(r,) = Yj(r2) = F,((r')-) F,(r) (9)

gives the transformation of the generalized spherical harmonics for elements H(r') of G.
Now let the sum in (1) be invariant under each in II and each in G.

Then, by (6) and (9), we require for each R(T{),

Z CjkmYjkm(r) = R(t,) Y, c?my?m(r)
J ,K,M J.K.M

= E c* "F; "(rt)F?-s(r)
J ,K, M, 3

and, using the fact that if fl[(r')-1] is in G, then, since G is a group, /?(r') is in G, for
each R(r[),

E c? uy? m{t) = r(ro E Cj mYj "{v)
J, K.M J.K.M

- E c/'-wF/'1'(r)Fj^(r:).
J , K.M ,S

(11)

Equating the coefficients of Ff ,M(r) in (10) and (11) gives

cf M = E cf'sY/ s(r.) = E cf-uYf-K(ro (12)
s s

for each T, in H, T,' in G.
Let constant vectors hj , gj be known, such that

Yj(T,)hj = hj , F,(r!)^ = gj (13)

for each r, , I\' . It is reasonable to assume such vectors known, since, using group
theory to determine the number of identical (A J irreducible representation occurring

HVigner, E. P., Gruppentheorie und ihre Anwendung auf die Quantenmechanik der Atomspektren,
Edwards Brothers, 1944.



1958] R. X. D'HEEDENE 191

in the 27 + 1 dimensional representation of the group, one can, at least in principle,
find coefficients hj so that the sum

E hKjYKAe,<t>) (14)
K =■ —J

is invariant under a group H (the same comments obviously hold for g, G)*. And, by
(7), this gives, for each T, in H,

i: tiYKAe, <t>) = fl(r() £ tiYfte, *)
K--J K UOj

= X) hjYj(8,
K, S

Equating the coefficients of Yj (0, 4>) in (15) gives (13).
We now have the solution to our problem; setting

Cf-V = hfgf* (16)
makes (1) invariant under both G and H, as we see by showing directly that (16) satisfies
(12), using (13) and the fact that Yj is Hermitean:

ICHF/'s(r,) = E ^V*F/"5(r,)
s s

= «* = C?M, (17)
ZG"F/'s(r:) = Z hjrgj*YjS-K(T,)

S S

= gf*hjM = Cj-M.

Generalization of this theorem to finding appropriate Cj'M so that the sum (1),
rather than being invariant, will have specified transformation properties, i.e. belong
to a representation other than At , is obvious.

As an example the first non-zero Cf"v will be found for the case of a tetrahedron in
a cubic lattice (e.g. solid methane). For the cubic group, Al occurs once in the one
(,/ = 0) dimensional representation, not at all in the representations corresponding to
J = 1, 2, 3, and once in the nine (J = 4) dimensional representation. Similarly, for the
tetrahedral group, A, occurs once in the representations corresponding to each of ./ = 0,
3, 4. It is trivial that C0 ^ 0. Since no Al representation occurs for J = 1, 2 in either
group, C, = C, = 0. Since g3 = 0 (corresponding to the cubic group), C3 = 0 although
h3 7* 0. Now the sum

(^),/2p4° (cos e) + (~)1/2(2),/2P; (cos 6) cos 4<t> (18)

of fourth order ordinary spherical harmonics is invariant under the cubic group4 and
therefore under the lower-symmetry tetrahedral group. Thus

g* = hi = is)'"' °' °' "■ GQ'"' °- °' °' (&)"7 <i9)
4Bethe, H. A., Ann. der Physik, ser. 5, 3, 133 (1929).
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and (16) gives

(F44'4 + Y\ ~* + Y:4 i + F;4'-4)
(20)

+ (^y Vi'0 + y:'-° + YiA + y°-4) + ^ yj-°

as a properly invariant function.
The author wishes to extend his appreciation to Professor R. Bersohn, without

whose assistance this work would have been impossible.

ON THE MOTION OF A SIMPLE PENDULUM*
•v

By BORIS GARFINKEL (Ballistic Research Laboratories, Aberdeen Proving Ground, Md.)

Abstract. The vanishing of the tension in a simple pendulum supported by a flexi-
ble cord causes the particle to pass from the circular to a parabolic trajectory. The
number and the nature of such transitions are related here to the value of the initial
energy.

1. When the initial energy of a simple pendulum lies in a certain interval, the tension
vanishes at some instant of the motion. Then, if the support is provided by a flexible
cord, the particle passes from the circular to a parabolic trajectory. The number and
the nature of such transitions are shown here to be precisely related to a dimensionless
energy parameter, £. Despite the intrinsic interest and the relative simplicity of this
motion, it does not appear to have been treated in the literature.

Let I be the length, m the mass of the pendulum, r its distance from the point of
support, 6 the angular coordinate measured from the downward-drawn vertical line,
and g the acceleration of gravity. The constraint

I - r > 0 (1)

can be replaced by the condition

HI - r) = 0, (2)

where X is a multiplier vanishing if I > r and admitting a non-zero value if I = r. The
Lagrangian of the system,

L = |m(r'2 + r20'2) + mgr cos 6 + \(l — r), (3)

leads to the differential equations of motion,

m(r" — rd'2 — g cos 6) + X = 0, rd" + 2r 6' + <7 sin 6 — 0, (4)

which together with (2) and (1) determine the functions r(t), 8(i), \(t) when the initial
conditions are prescribed. From (4.1) the multiplier \(t) can be identified with the

'Received July 22, 1957.


