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MOMENTS OF THE GENERALIZED RAYLEIGH DISTRIBUTION*
BY

J. H. PARK, JR.
General Mills, Inc., Mechanical Division

Minneapolis, Minnesota

I. Introduction. Gaussian processes are of considerable interest in problems involv-
ing random noise. Also of interest is the Rayleigh distribution which arises in work on
radar, the detection of signals in noise, etc. [1, 2], The generalized Rayleigh process
promises to be of interest in the future especially when signals in noise are thought of
to exist in a finite dimensional Hilbert space [3, 4, 5]. The generalized Rayleigh process
was defined and some of its properties were investigated by K. S. Miller, et al. [6]. The
purpose of this paper is to investigate the moments of the generalized Rayleigh dis-
tribution.

Let X1 , Xz , ■ • • XN be independent Gaussian random variables with means xx ,
£2 , • ■ • xH respectively and equal variances of one. A generalized Rayleigh random
variable , Y, (also referred to as a non-central chi-square variable) is defined as

Y2 = (1.1)
t = l

and the density function of Y, denoted g(y), is given by [Ref. 6, Eq. 1.6]

g(y) = \y^v/yo)N/2 exP l(yl + y2)/%]iw-v/iiyoy) for y > o ^ ^

lo for y 0,

where

yl = (1-3)
■ 1

and Ik(x) is the modified Bessel function of the first kind. g(y) is called the generalized
Rayleigh distribution. In this paper expressions for the moments about zero of g(y)
and several interesting properties of these moments will be derived.

It does not complicate the problem to consider non-integer moments. Therefore,
the ath moment of g(y) is given by

MJN, 2/0) = [ y°g(y) dy, (1.4)
J —00

where "a" is any real number. (However, as will be seen later, the above integral exists
only for a > — N hence a can be any real number greater than — N.) Whenever only
integral moments are considered the subscript n will be used.

The important results are:
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(1) The power series expression for Ma{N, y„),

Ma(N, y0) = 2"/2 exP (-yl/2) £ ^ + ,(^ + ^2] (y\/2)r, (1.5)

(2) The "closed form" expression for Ma (N, y0),

Ma(N, y0) = T'2 exp (-yl/2) r[(^(+^/2] M[(N + o)/2, N/2, yl/2], (1.6)

where M (with no subscript) is the confluent hypergeometric function (in the notation
of Jahnke and Ehde, [7, p. 275]).

(3) The asymptotic expressions for Ma (N, y0),

„ /~\t \ ■>[", . a(N + a — 2) , a(a — 2)(N + a — 2)(N + a — 4) ,mm, ~ 41 + —^— +  21 «)■ + "'J
as 2/0 w, (1.7)

and
Ma(N, y0) ~ N°/2 exp (ayl/2N) as N -» ». (1.8)

(4) The recursion formulas

Ma+2(N, y0) = (N + a)Ma(N, y0) + y^Ma(N, y0) + y0 dMa(^ yo)] (1.9)

and

Ma.2(N, yo) = § exp (-yl/2^1/2)^-^ [" " exp (x)xw+a'i)/2Ma[(2xfn] dx
Jo

for a > 2 - N. (1.10)

(5) The upper bounds on negative integer moments

M-n ^ | l/y0 |" n = 1, 2, • • • N - 2 (1.11)

and

^ | 1 /(N - n) r n = 1, 2, • • • N. (1.12)
II. General expressions for the moments of the generalized Rayleigh distribution.

We first obtain a simple expression for the moments as defined by Eq. (1.4). Substituting
(1.2) in (1.4) and abbreviating Ma (N, y0) by Ma we obtain

Ma = yl~iN/2) exp (— 2/0/2) f y(2a+1,)/2 exp (-y/2)1 lN^Ayyo) dy. (2.1)
Jo

The integral in the above expression diverges if a ^ — N. Therefore, whenever a
is used it will denote a real number greater than — N and n will denote an integer greater
than — N. Substituting in (2.1) the equivalent power series for 7(jr+2)/2 (yy0) [8, p. 163],
we obtain

M, 9i-w/2) / 2 ic\\ f yN+2r+a 1 exp ( — y2/2) , , ,2r , , ,
exp ( 2/o/2) J 2jj r! ruN + 2r)/2] ^o/2) dy' (2'2)

Interchanging summation and integration in the above, we note that the integral is a
gamma function, hence Eq. (1.5).
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The sum in (1.5) can, recalling that BT(B) = T(B + 1), be rewritten,

rfr + (N + a)/2] 2/ _ r[(N + 0)/21
h r! r[r + (AT/2)] ̂  ; r(iV/2)

1 + £ [ ff W + « + 2/c)/0V + 2fc)](wS/2)'J- (2.3)
The term in brackets in (2.3) is the power series for the confluent hypergeometric func-
tion, M[(N + a)/2, N/2, y\/2], and will sometimes be abbreviated by M. Therefore,
using (2.3) in (1:5) we obtain the closed form expression (1.6).

III. Asymptotic expressions. In this section asymptotic expressions for Ma(N, ya)
as a function of y0 with a and N fixed and as a function of N with a and yn fixed will be
derived.

First consider the case when a and N are fixed. Ma(N, ya) is given by (1.6) in terms
-of the hypergeometric function and therefore, using the asymptotic expression for M
given on p. 275 of [7], we obtain (1.7), the asymptotic expression for Ma(N, y») as y0—>°°.

To obtain the asymptotic expression for Ma as N —» we use the power series
•expression for Ma given in (1.5) where the series has been rewritten as shown in (2.3).
The product in the right hand side of (2.3) can be written

n (N + a + mm + 2k) - [1 + («mr n

+ (3-»

It is clear from (3.1) that this product is asymptotic to [1 + (a/N)]r. Hence from (2.3)
And (1.5) we obtain

Ma(N, i/„) ~ r[(i^(jvy2)/2] 2°/2 ex'P («2/o/2iV) as N -* » . (3.2)

But

rKr(iv/2)/2] ~{N/2Y'2 as (3-3)

and hence Eq. (1.8).

IV. Recursion formulas. Recursion formulas can be easily derived for moments of
order a + 2 in terms of the moment of order a and its derivative with respect to y0 .
Since M0(N, y0) — 1, moments of even integer order are easy to compute from this
formula. A recursion formula for moments of order a — 2 is also obtained in terms of
an integral involving the moment of order a.

As a preliminary step, consider Eq. (1.5) where x has been used in place of y2j2.
After differentiating with respect to x and rearranging terms we obtain

2x(m + = 2-2"/2 exp (— x) + (^ + «)/2]_\ " + dx) P 1 ' h r\ r[r + (N/2)] t4'lj
But

M = 2-2°/2 exn (-x) T - [r + (iy + a)/2]r[r + (iV + a)/2l (4 2)
0+2 P( ' h>r\ r[r + (N/2)] ( }
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Therefore

Ma+2 = (N + a)M. + 2 x(m. + (4.3)

If we put (4.3) in terms of y0 we obtain the recursion formula given in (1.9). In particular
since M0 = 1

M2 = N + yl,
M< = N(N + 2) + 2 yl(N + 2) + yl, (4.4)
etc.

To obtain the recursion formulas for decreasing moments we multiply Ma(x) by
exp (x)x(N+a~i)/2 and integrate term by term from 0 to yl/2 resulting in

V2/»wo / *

/ exp (x)x'N+a~i)/2Ma[(2x)1/2] dx
Jo

= (yl/2)^/2r/2 ± r[rr! rVVovy^f721 {yl/2)r■ (4-5)
But

Ma„2 = 2<°-2"2 exp (— yl/2) ± IJViV"+(fw2)])/2] {yW M
which together with (4.5) gives Eq. (1.10). It can be shown that the integration in
(4.5) exists only if a > 2 — N.

When a — 0 (1.10) becomes

M.2(N, y0) = | exp (— yl/2)(yl/2){2~m/2 [" " exp (x)xw'i)/2 dx (4.7)
Jo

and for a few particular values of N we have

-^-2(4, J/o) = 1/2/0,

M.2(6, y0) = [1 - (2/y20)]/y20

and

M_2(8, y0) = [1 - (Wo) + (8/yt)]/yl (4.8)
V. Upper bounds on negative integer moments. Two very simple expressions which

are upper bounds on negative integer moments can easily be derived. Let n be a negative
even integer, say n = — 2m, m = 1, 2, • • • then 1.5 can be written

CO , m

M_2m = 2- exp (-yl/2) £ f, (yl/2)' IT 2/{N + 2r - 2k). (5.1)
r-U n £-1

Assuming (N/2) — m > 0 the right side of (5.1) is not decreased by letting r be zero
in each term of the product resulting in

^ 1 /(N - 2m)m. (5.2)

Alternately if we assume (N/2) - 1 ^ mwe can replace rn for (N/2) — 1 in the product
in Eq. (5.1) and not decrease the right hand side. Therefore we have
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2- exp (— j/o/2) £ (r +1m), (tf/2)'. (5.3)

The sum in the right hand side of (5.3) can be written

S a «/2)' ' (2/yT ,5 rl «/2>' <5'4»
By filling in some positive terms in the sum on the right hand side of (5.4) it becomes
an exponential and we obtain

M-2m g W0-. (5.5)

By Schwartz's inequality

M2m+k ̂  M2mM2h. (5.6)

In particular if m = 0 and k is a negative integer, i.e., k = — n, n = 1, 2, • • • then

M-„ g M_2n. (5.7)

Combining (5.7) with (5.5) and (5.2) we obtain (1.11) and (1.12) respectively.
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