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Abstract. In order to determine the range of validity of certain elementary concepts
in waveguide theory, the propagation of electromagnetic waves along and through a
coaxial line with imperfectly conducting walls is studied in some detail for a particular
method of driving. In particular, it is found that the usual concept of attenuation is
meaningful only for a certain range of distances from the driving point. Beyond this
distance, the electromagnetic field in the coaxial line behaves more like a radiation
field. The explanation is supported by the behavior of the electromagnetic field in the
imperfect outer conductor of the coaxial line. It is also found that the solution in terms
of the "mode" concept has a surprisingly limited region of validity. The reflection
coefficient, the radiation pattern and the transverse distribution are also determined.

1. Introduction. The propagation of a wave through an imperfectly conducting
coaxial line is of interest from the point of view of waveguide theory. In the elementary
theory of waveguides, the wall of the waveguide is assumed to be perfectly conducting.
Under this assumption, there arises the extremely important, useful, and convenient
concept of "mode." With this concept, these waveguide problems become essentially
two-dimensional, since for each mode the dependence on z (the direction of the wave-
guide) is simply exponential. Furthermore, the number of modes is countably infinite.
However, the situation is no longer so simple if it is possible for the electromagnetic
wave to reach infinity in a direction perpendicular to the z-axis, as it can when the
waveguide is open or when the waveguide has an imperfectly conducting wall. In the
latter case, it is sometimes possible to use the idea of an impedance wall to save
the situation. Otherwise, the modes lose at least some of their desirable properties, the
excellent work of Marcuvitz and coworkers [1] in this connection notwithstanding. As
an example of the open waveguide, consider the microstrip. Here the lowest mode,
although exponentially decreasing in the direction of the z-axis, is unfortunately ex-
ponentially increasing at infinity in any plane z = constant. This is readily under-
standable and is intimately connected with the infinite length of the line assumed in
the theoretical treatment [2], On the other hand, for any physical waveguide or trans-
mission line, the total length must be finite and consequently any meaningful solution
of the physical problem must satisfy the usual radiation condition of Sommerfeld. For
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this reason, the connection between the theoretical and the experimental aspects of
the microstrip problem is by no means evident. Furthermore, it is apparently desirable
to treat a problem of this type where the generator is not at infinity. No really simple
problem of this type seems to have been treated in electromagnetic theory, and the only
reasonable candidates seem to be the circular waveguide and the coaxial line. The
advantage of the first is that it has one less dimension (the size of the inner conductor),
while loosely the advantage of the second is that there is no mixing of the TE and the
TM modes. Mathematically, the second problem is the simpler one of the two, and
hence the imperfectly conducting coaxial line is treated in this paper.

The precise geometry of the problem is shown in Fig. 1, where the imperfectly
conducting outer conductor of the coaxial line is of finite thickness and runs from — °°
to + along the z-axis while immediately inside a perfect conductor of zero thickness
is fitted from — » to 0. To avoid meaningless complications, the inner conductor is
assumed to be perfectly conducting from — ® to + . It is assumed that a TEM
wave propagates from left to right; it is incident on the junction at x = 0. Thus there
is effectively a generator at z = 0. This geometry is chosen because, in principle, at
least, it possesses a closed solution in terms of quadratures.

Since this problem is treated here only as an example of waveguide theory, there is
no necessity of dealing with it in its full generality. Therefore, in the approximate theory
of Sees. 5-10, it will be assumed that the free space wavelength is much larger than the
transverse dimensions of the coaxial line in addition to the more specialized assumptions
(5.1) and (5.2).

This problem is also of considerable interest in connection with the so-called electro-
magnetic shielding problem. However, in this connection, the assumptions (5.1) and
(i5.2) are too restrictive, and consequently, a more elaborate approximate theory has
to be developed after a thorough understanding of the features of the more restrictive
problem treated here has been acquired.

Before studying the problem of the imperfectly conducting coaxial line, it is necessary
to know some of the properties of the Green's function to be used in the integral-equation
formulation. This Green's function is studied in the next section.

2. Green's function. The interest here is in the implications associated with the
finite conductivity of the outer conductor. Since these implications do not depend
critically on the choice of the dielectric constant of this imperfect conductor, this dielectric
constant is to be identified with that of vacuum in the following consideration. If the
conductor is also non-magnetic, then both the magnetic permeability and the dielectric
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Fig. 1. Geometry of the problem.
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constant take those values appropriate for vacuum, say n and e. With the time dependence
exp (— ioit), Maxwell's equations are

V X E = iw/iH.,

V X H = 0 - iwe)E + J, (2.1)
V • E = V-H = 0,

where <r is the conductivity of the imperfect outer conductor of the coaxial line and is
replaced by 0 for air; the other symbols all have their usual meanings. If conventional
cylindrical coordinates are used, all field quantities are independent of 6 in this axially
symmetric problem. Therefore

Ee = H, = Hr = 0. (2.2)

With the continuity of Ez and He as boundary conditions and the radiation condition at
infinity, the electromagnetic field is completely determined by (2.1) provided that J
is given. Let G0(r, f) exp (ifz) be the ^-component of the electric field produced by the
current source J = z 8(r — b) exp (i£z), where z is the unit vector in the ^-direction;
it may then be verified that

G0(b, f) = iun[k2g~1Q1 — (k2 + tK^iT'Qa]-1, (2.3)

where

n ff")(fo)go1)'ftft) ~ H?\ta)H(02)\m
Wi Hpq&HFm - - {2A)

q* =

X
(2.5)

and

Note that

and that

ffoU)Gc) H«\r,b)H(02\r,c) - HfXvtyH^ivc)

rt~lk2{k2 + uYWdje) Hi"(nb)Hin'(tie) - H^(vb)H^'(vc)
H(0Vm Ht,iy(rib)H™(r,C) - H?y(r,b)K\Vc)

v^k2(k2 + uYWm H(0v'(r,b)H{02)\r,c) - H^XvbWinc)

H = (k2- f2)1/2, v = (k2 + u2 - f2)1/2, (2.6)

k2 = wVe, k2 = w MO". (2-7)

G0(b, f) = G0(b, - f), (2.8)

G0(b, t) ~ —i(2k2 + z-K2)~Wf (2.9)

as f —> 00. Because of (2.9), it is not meaningful to take the Fourier transform of G0(b, f)
with respect to f. Since G0(b, f) = 0(k2 — f2) as f —> ±/c, it is possible to introduce
an analog of the ordinary vector potential by defining

Qi (b, z) = (27t)_1 [ d^Gi (b, f) exp (t'fz), (2.10)
J-co
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where

o^b, r) = (fc2 - fr^b, r). (2.11)
3. Formulation of the problem. The problem of the coaxial line may now be formu-

lated in terms of a Wiener-Hopf integral equation. Let i(z) be the z-component of the
total surface current density on the infinitely thin perfectly conducting sleeve; the
incident current density is exp (ikz). Thus as z —> — <»

i(z) ~ exp (ikz) + r exp (—ikz), (3.1)

where r is the coefficient of reflection with reference to the junction z = 0. With the
gi of (2.10), i(z) satisfies the integral equation

(J? + fc2) / dz'i(-z'^1 (b'z ~ 2') = 0 (3.2)

for z < 0. If k is assumed to have a small positive imaginary part which eventually
approaches zero, then the Fourier transform of (3.2) in the form

/ ~ z7e)^][(Jz + ik)dl b' 2 ~ 2'^] = E'(b' ^ ^3'3^

is

-Kf - fc)/(f)][(f + k)G, (b, f)] = 8.(6, f). (3.4)
This equation is valid in a small strip | Im f | < «, where G^(b, f) has no zero. The stand-
ard Wiener-Hopf procedure calls for a factorization of G, in the form

Gt(b, f) = L+(f)/L_(f), (3.5)
where

L,(f) = exp j(2inT1 J ' ^ dt(t - f)"1 In G^b, *) j. (3.6)

Note that

L_( f) = [L+(-f)]-'. (3.7)
It follows from (3.4) and (3.5) that

(k2 - f2)/(f)L+(f) = &,(b, f)L_(r). (3.8)
This defines an integral function which is found to be a constant, say C. As a consequence
of (3.1), the special case f = k gives

C = 2 ikL+(k). (3.9)
From (3.8) the electric field is given by

E.(b,z) = (2ir)~1C [ dnL-tt)]-1 exp (ifr). (3.10)
J —oo

In principle, the problem has been solved in closed form.
4. The radiation pattern. The field far away from the origin is considered here.

Since as £ —» 0

Go(b, r) = — (toe)-1[6 In (b/2)]£a[l + 0(? In £)], (4.1)
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He(b, z) must be proportional to z~2 as z —» oo. This fact is of interest because it shows
immediately that, as z —» °°, an infinite number of "modes" must contribute significantly.
The reason is that the combination of a finite number of modes must yield an exponential
decay in the 2-direction. This z~2 decay may be understood as follows. Because the outer
conductor of the coaxial line is not perfectly conducting, there is a coupling of the field
inside the coaxial line with the radiation field outside of the coaxial line. Since the outside
field decays as z~2 because of cylindrical symmetry, the fi,eld inside the coaxial line
must also decay as z~2.

Thus the term "radiation pattern" is meaningful for the present problem. It follows
from (3.8) and (3.9) that, as r, z —* 00 with fixed <j> = tan-1(r/z),

H,(r, z) ~ A(^)(r2 + 22)"1/2 exp [ik(r2 + zT*], (4.2)

where

= 4rf L ^s<t>) {HaV(kc sin <t>) sin 4>[H(0v(b<i>)Hoy(c<i>) - H{02\b*)Hoy(c*)]

- k(k2 + sin 4>) [H^' (btylff (c<t>) - H'^ (W)H(nl)

with
= (k2 sin2 <p + u2)'/2. (4.4)

5. Approximations for small skin depth. Although the exact solution has been
obtained in principle, it is not very useful because of its complexity. The situation is
greatly simplified if the coaxial line is only slightly leaky as when c — b is much larger
than skin depth 5 = k-1 V2, or more precisely, if

b » 5 (5.1)
and

exp [k(c — b) \/2] » 1. (5.2)

Under these assumptions, Q2 of (2.5) is approximately

Q? = i. (5.3)
Furthermore when kc <5C 1, (5.3) leads to the following approximation of G0(b, f)

GT(&, r) = »V_1[ 1 + C.(*/0T\ (5.4)
where

Cj = etw/*[kb ln(6/a)J_1. (5.5)

The physical meaning of (5.2) is as follows. When the coaxial line is lossless, the
characteristic scale of length for the variation of the field vectors in the z-direction is
k~l, which is very large. When the coaxial line is slightly leaky, the field inside the line
tends to decrease when z increases, and this characteristic scale of length is the smaller
one of k'1 and Kbk'1 exp [k(c — b) \/2]. If this characteristic length is much larger than
the outer radius c, then the transverse problem is essentially separated from the longi-
tudinal problem, except possibly near 2 = 0. Once the longitudinal and the transverse
problems are separated, the Green's function G0 must admit simplification, and basically
only the longitudinal problem need be considered. The condition (5.2) implies that the
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frequency under consideration should not be too low in order that the thickness of the
imperfect outer conductor be several times the skin depth.

When k2 is neglected compared with k, (5.4) and (2.11) lead to

G?\b, r) = tv-'fe2 - r2)1/2[fc2(i + co - rT1. (5.6)
This may be factored by inspection to give

LV'(f) = {i/a)v\eiT/\ + f),/2[fc(l + C\)1/2 + f]"1 (5.7a)

and

Li"(f) = (iy<7)-1/2(eiT/4K - r)-1/2[fc(l + C0,/2 - fl. (5.7b)

In particular, it follows from (3.9) and (3.8) respectively that
C(1) = -K1/2a-1/2e-<T/s[ 1 - CJ4] (5.8)

and

£">(6, f) = -e'-'V'V'tl - Ci/4t\\etT/*K - f]1/2[fc(l + C,)1/2 - f]"1. (5.9)

Note that 8* is proportional to a'1 as expected.
The advantage of this approximation is that the factorization can be carried out

explicitly. However, the exact Green's function G0(b, f) as given by (2.3) has branch
points at f = ± k, while the function (?"' (b, f) as given by (5.4) has no branch points
there. Since it is precisely these branch points that determine the behavior of the field
vectors for large z, this first approximation is not good enough. Since, as £ —» 0, the
series expansion of the Hankel function yields that | H„"(fc)/H^(£c) | = 0(£ln£),
a better approximation of Q2 in (2.5) is

Q<2' = *'U +P), (5.10)
where

P = 4H«\®e2i'u-h)[vr\k/K)2Hi1)\ld - K\$p)]. (5.11)

The term P is important only when £ is small. Therefore it is sufficient to use

L(2\k) = L[v(k), or Cm = Cw. (5.12)

Let

M(f) = P[ 1 + CM)2}' \ (5.13)
then (5.10) leads to

G[2\b, r) = G[v(b, f)[l + M(f)]-1. (5.14)
Let the quantity in the bracket of (5.14) be factored in the form

[1 + M(f)]-1 = [1 + ]\r+(f)]/[l + JV_(r)]„ (5.15)
where

N..(f) = -1 + exp { -(2ri)-1 ["" ' dt(t - f)-1 In [1 + M{t)}\

= -(2m)-1 f ' dt(t - sTlM(t).
J —oo* if/2

(5.16)
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It follows from (5.15) that

Li2)(r) = + ALtt)]. (5.17)
In the next few sections, the electromagnetic field at various points of the space

will be studied. For simplicity all superscripts (1) and (2) will be omitted and only leading
terms retained since, except at great distances from the junction at z — 0, the first
approximation and the second approximation differ negligibly.

6. Approximate field inside the coaxial line. In this section, the behavior of the
field for a < r < b is considered. For a < r < b, let

so that

S,(r, f) = S.(6, f)<S,(r, f). (6.2)
Note that as £ —> 0,

Si(r, f) ~ In (r/a)/ln (b/a). (6.3)
Equation (6.3) implies that, when z^> b, the transverse distribution of E, is essentially
In (r/a).

The region a < r < b may be divided into various subregions I — V as follows
Region I: — z 5>> b;

Region III: z^> b but kz \ C\ [ <SC 1, and
Region V: k \ C\ \ z » 1.
Region II is the region between regions III and I; and

Region IV is the region between regions III and V.
The region II is the junction region and will not be studied further.

Let region I be considered first. In this region, Ez is obviously very small. Thus, it is
necessary to consider He(r, z). It follows from (,6.2) that the Fourier transform of If s(r, z)
is

3Ce(r, f) = io)ef%(b, ^(d/d^S^r, f). (6.4)
If Bes denotes "residue of", then in this region (3.1) holds with

Thus

T = -[Res r2S,(6, f)]/[Resr2S.(&, f)] = C,/4. (6.5)
f=-t t-k

He(r,z) = J [«"'+ JC,®-"']. (6.6)

For region III, it follows from (5.9), (6.2) and (6.3) that

EXr,,) - ^ e«" exp [.«"< ~b-^]. (6.7)

and

He(r, z) = - e'k' exp <6'8>*]<



8 TAI TSUN WU [Vol. XIX, No. 1

Therefore, the conventional theory of waveguides with a slightly lossy wall is valid
provided that kz \ Ci \ <SC 1 where C\ is defined in (5.5).

For the region V, the second approximation has to be used. The substitution of
(5.17) into (3.8) gives

F(*,(f) = F<i>(f)[i _ J\r_(r)]. (6.9)
When z is very large, only a small region in the neighborhood of f = k can contribute
to the inverse Fourier transform. Therefore, it is only necessary to consider the second
term — Fa'(f)2V_(f), since Fa>(f) is analytic at f = k. With this notion, iV_(f) may be
found explicitly near f = k as follows:

2V_(r) = M(f), (6.10)
since Ar+(f) is analytic at f = k. On the other hand, it follows from (5.13) that, near
r = k,

M(f) = |4[fc2(l + CO - fJl-'terV'"4 In m exp [2iVo(c - 6)], (6.11)
where ??0 = « exp (ix/4). Consequently, for this region

F(2'tt) = _F(1>(f)M(f) (6 J2)
= 2A"V,[fc(l + Cj/2) - f]-2£4c In (£c) exp [2^0(c - b)].

The substitution of (6.3) and (6.12) into (6.2) now yields

Et(r, z) = I K*k~\~l exp [2iVn(c - b)] F, (6.13)

where

F = f ^e'f2[fc(l + C,/2) - f]-2(fc2 - f2)2 In [(ft2 - r*)l/,c]. (6.14)
J — CO

The integral in (6.14) may be evaluated by closing the contour of integration in the
upper half plane. Thus

F = -4«C2fc3[l - 2tri + 2 In (k2C\c )] - 2xzC?fc4[ln (k2C\c) - ix]
1-2 (6.15)

+ 4*ikV" fg - rJ f2.
The first two terms on the right hand of (6.15) are never large enough to make a sig-
nificant contribution so that they may be omitted. Thus

E,(r, z) = 4i*WV*' {exp [2iVo(c - 6)]} J'' - f] V2- (6.16)

As z —> oo a stationary phase integration yields

Ez(r,z) ~ — 32u*cb2k~3ir~1e''"{exp [2iij0(c — 6)]} In (b/a) In (r/d)z~3 (6.17)

and

H,(r, z) = %iK~2cb2kr2eikz{exp [2iVo(c - 6)]} In (b/a)-z~2. (6.18)
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Note that Ez behaves like z~3, and hence He and Er behave like z~2. It is interesting
to note that the asymptotic phase velocity is that of vacuum.

Finally, there is still region IV to be studied. Because of the form of Eq. (6.9), it is
only necessary to add (6.7) and (6.16). Thus

+ 4ic/cfc-1 {exp [2ir,0(c — 6)]} J dfe,r*p^"1 — f J -i In (r/a)t e :—,,, . ■In (6/a)

(6.19)

This is an approximate formula valid for all z so that z » b. It gives explicitly the correc-
tion to the simple theory (given by the first term) for waveguides with leaky walls.

These explicit results varify in detail the discussion at the beginning of Sec. 4.
7. Approximate field in the imperfect conductor. The region occupied by the im-

perfect conductor may also be divided into five subregions, I' — V', as given in the
last section except that here b < r < c. In region III', the conventional waveguide
theory with exponential dependence of z must hold again. Thus attention is concentrated
on the region V'.

The function that corresponds to the Si of (6.1) is now

S2(r, r) = D(r)/D(b), (7.1)
where

D(r) = (7.2)
r+ t*TW(&) H^MH^'ivc) -

Analogous to (6.2), it follows that, for b < r < c,

G.(r, f) = 6.(6, t)S2(r, f). (7.3)
For the present purpose, the appropriate approximate formula for S2 is

S2(r, f) = (6/V)1/2{exp [iVo(r - 6)]} (l - exp [2iti0(c - r)] ^ ^

— 2e~"r/4{exp [2it]0(c — r)] — exp [2t'j?0(c - 6)]}Kc(£/'fc)2 In (£c))

when £/k is small. With (7.3) written in the form

S.(r, f) = 8«1)(6, f)[l - M^)]S2(r, f), (7.5)
the electromagnetic field in region V' is found to be

E,(r, z) = AK3cba~lk-\b/r)in In (b/a)eikz exp [iVo(r - b)](eiT/4k{exp [2iVo(c - r)]

— exp [2ii)a{c — 6)] Js-2 — 8ub In (6/a) exp [2irj0(c — b)]z~3),

and, with the second term in the parentheses neglected

HSr, z) = 4ii<2cbk~2(b/ry/2 In (b/a)ek* {exp [irja(r — b')]}z~2

■ {exp [ivo(c - r)] + exp [ir/0(c + r — 26)]}.

(7.6)

(7.7)

Here the second term in the brackets evidently represents a reflection at r = b. It is
noted that (7.6) and (6.17) give the same value for E, at r = b, while (7.7) and (6.18)



10 TAI TSUN WU [Vol. XIX, No. 1

give the same value for H, at r — b. This should be the case for a self-consistent scheme
of approximation.

A quanity of particular interest is the transverse distribution of the magnetic field
in the outer conductor. For region III', it is

| He(r, z) | ~ r_1/2^exp & — + exp (2c ^ -J, (7.8)

while for region V', it is

i tt , ni -i.r — (c - r) , —(c + r — 2b)~\1 He(r, z) I ~ r ' exp   (- exp   . (7.9)

These distributions indicate clearly that, for regions III and III', the electromagnetic
energy effectively leaks from the coaxial line to the radiation field, while for regions V
and V', the electromagnetic energy effectively leaks from the radiation field into the
coaxial line. This lends further support to the qualitative discussion of Sec. 4. For region
IV', the distribution of the magnetic field must be intermediate between that given
by (7.8) and that of (7.9). These results are schematically sketched in Fig. 2.

8. Approximate radiation field for large z. It remains to consider the situation
outside of the coaxial line where the structure of the field is enormously complicated.
In this section, attention is restricted to the extension of regions V and V', namely the
region V": kz | Cx | » 1 and r > c. This part of the calculation is therefore a continuation
of that of the last section. In the next section the radiation pattern is to be found approxi-
mately, as a continuation of Sec. 4. In Sec. 10, attention is turned to the extension
III" of regions III and III'. There the relation with the lowest "mode" of the coaxial
line is evident, and the present theory puts a limit on the range of validity of this "mode"
solution.

For r > c and according to (2.3), the function that corresponds to S, and S2 is given by

(y f <.\ _ 41/o "(£r) , .
Sa(T' tmjc D(b) ' (8-1)

and Ez is determined by

8,(r, = 8,(6, f)/S3(r, f). (8.2)
The situation here differs from the previous ones in that which is a factor in

h c b c b c

b « z «Xb/S z ~ Xb/S z » Xb/8

Fig. 2. Sketches of magnetic field distribution in the outer conductor.
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(8.1), has branch points at f = ± k. Furthermore, other contributions with branch
points, from the determinant and from F(X), have at least a factor £2. For region V",
these other contributions may be neglected. Therefore, (5.9) is adequate for use in
(8.2) with the result

8,(r, f) = —2ire<*/i<r~1K3k~3b3/2c1/2%2 In (6/a){exp [iVo(c - b)])HP(fr). (8.3)

From the discontinuity of the Hankel function across the branch cut, the inverse Fourier
transform gives

E,(r, z) = -2eiT/ia~Vk~3b3/2cl/2 In (6/a)|exp [iVo(c - (8.4)

where

B(x) = f s3 dsJ0(s) exp (—is2x). (8.5)
Jo

It does not seem possible to evaluate B(x) explicitly in terms of known functions. How-
ever, it is easy to find that, as x —-> °°

B{x) §aT2. (8.6)

The substitution of (8.6) into (8.4) yields

E,(r, z) = 4e<T/**-Vk-*bv*cV2 In (6/a){exp [iVo(c - b)]}eik'z~2. (8.7)

This result is valid for z 5i> b/kb and c < r « (z/k)l/2. Note that this field is independent
of r, as must be the case for a far-sone radiation field. Also note that (8.7) is consistent
with (7.6).

It is not possible to find He(r, z) directly from (8.7). To find He , it is necessary to
go back to (8.1), the reason being that d/dr nullifies the leading term in the present
calculation. The determination of the magnetic field is not given here since it does not
lead to anything interesting.

9. The approximate radiation pattern. In this section, (4.3) is to be simplified
under the assumptions (5.1) and (5.2). First, the functions L+(k) and L- (k cos <t>) may
be eliminated by (3.8), (3.9) and (5.9). The rest of the calculation is straightforward
with the result

Afa) = JfcVV/2c1/2{exp [ir,0(c - 6)]}[(1 + C,)1/2 - cos *]"' sin
r 7 "l-i (9-1)

_ t/4 -2.1 ykc Sin d> . ir ir/4 ■ 2 ,• 1 — e kc sin 0 In   (- - e kc sin </> I ,

where y = 1.78107. Note that .4(0) = 0, as it should.
It is interesting to know the direction <j>0 of the major lobe for this radiation pattern.

This may be found as follows. From the last factor in (9.1), it is seen that

kc sin2 <£0 In yk0 ^ = 0(1). (9.2)

Therefore, in the vicinity of </><, , A (<t>) is approximately proportional to

A(<t>) ~ const sin 0^1 — e~"/4nc sin2 <^> In ^J . (9.3)
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The absolute value of this is

(9.4)
| A(<£) |2 ~ const sin2 <£^1 — y/2 kc sin2 0 In —

, 2 2 • 4 V, ykc sin <t>\2+ kc sm cj>\ In -—-—- I

This quantity on the right has a maximum at approximately

00 = (|Kcln-Kr) 1/2, (9.5)

whence

A(<j>0) | = K-W/8c1/2[exp s 6)] In (&/«)[ 1 + 2"1'2]1 (9.6)

10. The "mode." Finally, consider the region III" defined by z 55> 6, fcz | C\ | <3C 1
and r > c. For this region (5.9) may be used for F(f). Therefore, from (8.1) and (8.2)
it follows that

S,(r, f) = -eir/\a-l[k(l + Cr2 ~ f]"1
irlrjC

#o (rib)
H(0vm H?\v0 (10.1)

f fc' + At
and hence

3C2(r, f) = 2ei'/4fcV1rl[fc(l + ^)1/2 - frWc)1'2#"'^) {exp [t*,(c - 6)]}

-» + -ln^--&}\ (10.2)
7T Z T K I; CJ

In particular, when fcr <K 1, 3C,(r, f) and hence //2(r, f) are proportional to 1/r. This
fact agrees with the result given for the lowest "mode." Secondly, when r increases, the
phase of H[l) (£r) cannot decrease near f = fc, and hence the phase of Ht increases. This
again agrees with the result for the lowest "mode" [2]. However, beyond that, the result
for the lowest "mode" does not agree quantitatively with (10.2). In other words, for the
present method of driving, the lowest "mode" does not dominate anywhere outside of
the coaxial line. The "mode" picture therefore has very limited scope of application
indeed.

11. Summary and conclusions. The problem of the imperfectly conducting coaxial
line driven as shown in Fig. 1 has been studied in some detail. The results for small skin
depth may be summarized qualitatively as follows. The place where more detail may be
found is written in square brackets.

A. The reflection coefficient in the line at z = 0 is of the order 8/b\n(b/a) [(6.5)].
B. For r < c and b <5C z <3C \b/8 the electromagnetic field decays exponentially

[(6.7) and (6.8)].
C. In the dielectric inside the coaxial line, i.e., a < r < b, and for z \b/8, the

longitudinal field decays as z'3 but the transverse fields decay as z~2 [(6.17)
and (6.18)].
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D. In the outer conductor of the coaxial line and for z » \b/S, all field components
decay as z~2 [(7.6) and (7.7)].

E. In the dielectric inside the coaxial line, the transverse distribution of each field
component is essentially independent of z for all z 6[(6.19)].

F. In the outer conductor the transverse distributions are not even approximately
independent of z [(7.8), (7.9) and Fig. 2],

G. Outside the coaxial line for z \b/S and c < r <K (z/k)l/2, the field component
Ez is approximately independent of r[(8.7)].

H. The radiation pattern has a maximum in a direction slightly inclined from the
direction of the coaxial line [(9.5) and (9.6)].

I. The "mode" picture has only qualitative meaning outside of the coaxial line
[Sec. 10].

It is to be expected that many of these statements are true for any waveguide with
a leaky wall and driven in a similar fashion. Let D, be the region enclosed by the wave-
guide wall, Z)2 be the region occupied by the waveguide wall, and D3 = D, + D2 . Also
let L be a typical transverse dimension of the waveguide, then the following general-
izations may be conjectured.

B'. The electromagnetic field decays exponentially for L « z <3C XL/8 in the region Da.
C'. Assume z » XL/S. Then for a TEM incident wave, the longitudinal field decays

as z~3 but the transverse fields decay as z~2 in the region D1 . For a non-TEM
incident wave, all components decay as z~2.

D'. For z 5>> X L/b and in the region J)2 , all field components decay as z"2.
E' In the region D, , the transverse distribution of the field components are essen-

tially the same for all z» L.
F'. The statement in E' is not true for D2 .
H'. The radiation pattern has a maximum in a direction slightly inclined from the

direction of the waveguide. (This seems to be true for both fast and slow waves.)
I'. The "mode" picture has very limited validity in general.

The validity of these conjectures remains to be investigated. In particular, their
correctness for a non-TEM incident wave should not be taken for granted.
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