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SOLUTION OF A DIFFERENCE EQUATION PERTINENT TO LINEAR,
PARAMETRIC ELECTRIC NETWORKS*

By B. J. LEON (Hughes Research Laboratories Malibu, California)

This paper presents an algorithm for finding the fundamental system of solutions of
a class of linear difference equations relative to a theorem of Perron [1]. This particular
fundamental system is important in the analysis of physical systems with periodic
parameters such as linear parametric networks [2] and parametric amplifiers. These
difference equations arise as the Laplace transforms of the linear differential equations
with periodic coefficients that characterize parametric networks. These transforms must
be analytic in a half plane. In Ref. [2] it is shown that the method of variation of param-
eters yields such an analytic transform if the solutions to the homogeneous equation
are Perron's fundamental system. These solutions to the homogeneous equations need
not be analytic or even continuous.

The homogeneous linear difference equation under consideration is

0 = U(w + n) -(- an-i(o3)U(u + ft — 1) + • • • -f- a0(o>)U{u) (1)

subject to the conditions

a) lim a,i(u + m) = /!,, a constant,
m-* w

integer

b) A0 0, and a0(co + m) ^ 0 for m = 0, 1, 2, • • • ,

c) un + + • • • + A0 = (m — wO(ft — u2) • • • (u — un)

d) | U; | | Uj | for i ^ j.

(2)

In the difference equation literature—Milne-Thomson [3] is the most complete
reference for methods of solution—the emphasis is on finding analytic solutions to the
homogeneous equation. The complexity of these methods increases markedly with both
the order of the difference equation and the complexity of the coefficients of the equation.
With these methods, only the simplest of parametric amplifier problems can be put on
an IBM 709 computer. If a few second-order effects are included in the amplifier circuit
model, the machine overflows.

The algorithm presented in this paper is intended for execution on a digital computer.
When the problem is set up on a digital computer, the coefficients in Eq. (1) are sub-
routines, which are brought into the main program as numbers. The number of operations
in the main program depends on the order of the difference equation and on the asymp-
totic behavior of the coefficients. The complexity of the coefficients for small co does
not affect the complexity of the main program.

*Received August 12, 1960.
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The basis for our algorithm is the property of the solutions to the difference equation
given by Perron's theorem. That theorem states that for Eq. (1) subject to the conditions
(2) there exists a fundamental system of solutions, f7, , U2 , • • • , XJn , such that

.. Ufa -)- m + 1) _
L™ Ufa + m) ~ Ui • (3)

integer

We recall that the definition of a fundamental system of solutions for difference equa-
tions is similar to the definition for differential equations except that the arbitrary
constants in the differential equation case are replaced by arbitrary periodic functions
of period one in Re [«].

The algorithm has five basic computational steps that are repeated over and over
until all the desired solutions are found. Let us first describe the steps in words and
then present them formally with justification. The steps are

(I) There is a straightforward procedure for constructing solutions to Eq. (1) [4],
Although the solutions so constructed do not have the asymptotic property (3), we may
formally write each solution as a linear combination of the members of the desired
fundamental system.

(II) From Eq. (3) we see that the asymptotic properties of the desired U, are all
different. Thus if we examine solutions generated in step (I) for large values of the
argument we can ascertain their relative dependence on the desired Ui which has the
fastest rate of growth. Call this largest solution Ih .

(III) Starting from n-linearly independent solutions constructed in step (I) with
known lh dependence from step (II) we can proceed by systematic elimination to find
(n — 1) solutions which depend only on U2 , U3 , ■ ■ • , U„ .

Since all the | u, | are distinct, steps (II) and (III) can be repeated eliminating the
U2 dependence, then U3 , etc., until there remains only one solution which has the
asymptotic property of Un . (We choose the subscripts so that | | > j u-2 \ > • ■ • >
I un |.)

(IV) When a solution to an nth-order linear difference equation is known, that
solution can be used in conjunction with the equation to derive a new linear difference
equation of (n — l)th order [5]. We shall show that if the solution Un, found in (III), is;
used to derive an equation of order (n — 1) then this equation has a fundamental system
of solutions Ui,! with

,. Ui, i(o> + m + 1) Ui , r, /.lim by—7 : r— = — , Z = 1, 2, •••,(»— 1).
Ui,l(u + m) Un'

The Ui,i , like the U( , have distinct asymptotic properties. Thus we can proceed by
steps (I), (II), and (III) to find a solution Un-i.i ■ This solution can then be used to find
an equation of order (n — 2) and so on.

(V) Finally we get the desired Ui from the solution Uiti by

UM = Un{«) s: AX,

where S" [ ] AX is Norlund's summing operator [6]. The various steps of the algorithm
are repeated until all the desired U{ are found.

Formally the algorithm may be written as follows:



1961] PARAMETRIC ELECTRIC NETWORKS 65

(I) Let
co'-1 for 0 < Re [co] < n

- [o„_1(co — n)U'(u — 1) + a„-2(w — n)U'(oi — 2) + • • •

+ a0(no — n) U'(co — ri)] recursively first

for n < Re [co] < (n + 1)

then

(n + 1) < Re [co] < (n + 2)

etc. for all

Re [co] > n

1

U\co) =

[U'(u + n) + a„_i(co){7*(w + n — 1) +
a0(co)

+ a^co) U (co + 1)] recursively first

for 0 > Re [co] > —1

then — 1 > Re [co] > —2

etc. for all Re [co] < 0.

Justification.
A) The U' are well defined solutions by condition (2b) and Ref. [5].
B) The U' form a fundamental system of solutions because

a) for 0 < Re [co] < 1, Casorati's determinant,
n— 1

Z>(co) =

1 CO CO

1 CO -{- 1 (co -f- 1)

1 co -f• n — 1 (co-f-w — l)n 1

is a Vandermond determinant [7], which is easily seen to be non zero.
b) By Heymann's theorem [8]

D(co + 1) = (—l)na0(co) D(co).

c) By Condition (2b) above D(co) ^ 0 for all co.
d) By Casorati's theorem9

X)(co) ̂  0 => the 'Ul's form a fundamental system.

C) The V"s can be written formally as

U1 = plUi + plU2 + • ■ • + plUn ,
u2 = p^plu, + plu2 + • • • + plun],
u3 = p'ipiu. + piu, + ••• +viun],

un = vivMh + piu2 + • • • + piun],
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where the p"s and p)'s are periodic in Re [to] with period one. The m.'s are ordered so that

I «i I > I «a | > • • • > | «» | •
(II) If C/l(co + to) s* 0 let

Justification.
If p\(u) ^ 0 then

it \ U'(u + to)
V m) - !/V+rn)'

limp*(<d, m) = p'(u).

To show this we note
a) By (3) for every « > 0 3 M,(w) and a real, positive K{(«) 3 for m < M,(w)

Jf((«)(| U{ | - «)—'<•> < | + to) | < Uj | + £)-"«»\

b) For

, ^ \ ui\ ~ \ u2\
2

and m > max M< = M0 we have

U,(u + n) KM ([ Uj | + «)*-*' r | tt< | + <"]-*•
l/i(w + m) ^(w) (I u I _ «)*•"*' L| Mi I - «J

So for j ^ 1 and K, (co) ̂  Owe have

,. Ui(u + m)lim 777—: r - 0.Ui{w + to)

c) The rest is straightforward.
(Ill) Let

UiA=^-Ul for t = 2, 3, •••,».
p

Justification.
The C/''1 can be written formally as

u2-1 = vVu2 + pl-1u3 + ■■■ +plAu„,
y3A = p31[V\au2 + pi'1 u3 + ■ •• + pllun],

u"'1 = + pns-lu3 + + P:Aun],

where the p'"1's and p-'"s are rational combinations of the p"s and p-'s.
This form is the same as 1(c), so steps (II) and (III) can be repeated until there

remains only
Tjn.n—1 n.n-lTT
U = p„ (Jn .

This solution is a member of Perron's fundamental system relative to the root u„ .
Henceforth we suppress the superscripts and refer to this solution as Un .
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(4)

(IV) Consider the equation

U,i(ic + n — 1) + a„_2,i(tt) t/,x(w + n — 2) + ■ • • + a0,i(u)U ,i(w) = 0

with

— = a0(co) {/„(&>) + • • ■ + a,(u)Un(« + s).

Justification.
A) Equation (4) has a fundamental system of solutions [5]

= AJT > i = 1,2, , (n - 1),
^ n

where

A/(X) = /(X + 1) - /(X).
t.n ,• Ui,j(u + n + 1) M,-B) lim ■—77—7—7 r— = —

U i, i(co + to) u„

To show this we write

Ui,i(u -|- to 4~ 1) _ rUfa 4- to -f- 2)   Ufa 4~ to 4~ 1)~|
Ui,i(w + to) Lf^n(« + to 4- 2) Ufa 4- to 4" 1)J

P Ufa 4~ to 4~ 1) _ Ufa 4~ to)~| 1
l_£7n(« 4- to 4- 1) J7„(w + to) J '

ITUfa 4- to 4- 2)~[ / [~Ufa 4~ to 4- 1)~|
lL Ufa + m) J/ L [7,(0,4- to) J

f ff.(« 4-to 4~ 2)~[ / ?7„(a) 4~ to 4~ 1)~D
L Ufa + m) J/ L £/.(« + to) Jj

E/j(to 4~ to 4~ 1)~| /["?/„((.> 4* to 4- 1)1 \ _
Ufa + m) ]/ L f/„(co+m) J/

Thus

.. E/;,i(co + m + 1) _ (u2,/un) — (Uj/Un) _
Ui,i(CO + to) (.Ui/un) — 1 Un

C) The construction procedure (I) gives a fundamental system of solutions to Eq.
(4). By Heymann's theorem the only zeros of D(u) are congruent to the zeros of a0.i ,
but these are considered singular points of the equation. Thus the hypotheses of Casorati's
theorem are satisfied.

D) Repeated application of (II) and (III) leads to a solution with the asymptotic
property of {/<„_u.j . This solution, along with Eq. (4), can be used to construct an
equation of order (n — 2) with the same properties as Eq. (4).
(V) Let

U, = Un S: [tf4>1(X)] AX,

where /" [ ] AX is Norlund's summing operator [6].
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Justification.
These Ui are the solutions J7,- to Eq. (1) that we desire because f" is the inverse of

A (step (IV)A) to within a periodic function. Thus the problem is solved.
Discussion. In the various steps of the algorithm divisions are required. For these

operations we must be sure that the divisor is non zero. First we note that if the co-
efficient of Eq. (1) are analytic along a line parallel to the real co axis except for isolated
singularities, then the solutions U' generated in step (I) will have the same property
along that line except at the integer values of Re [«]. Therefore the zeros of the various
divisors will be discrete, and the algorithm can fail because of attempted division by
zero only at a discrete set of points.

The other place where the algorithm as stated may fail is in step (II) where we
require p\(u) ^ 0. It is possible that our construction of the U' gives a U1 which is
independent of Ui . Since the U' form a fundamental system, at least one of the Ul
must depend on U1 . Therefore if we find that the p'(u, n) do not tend to a limit, we
must renumber the U' so that the new U1 is one of the U' that depends on L\ . Through-
out the elimination process there is the possibility of this analogous situation occurring.
However, it can always be circumvented by renumbering the V.

In the parametric network problem there are symmetries in the original homogeneous
equation. These symmetries can be used to reduce the number of operations required
in the algorithm. In a subsequent paper these symmetries and the corresponding re-
ductions will be discussed.
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