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1. Introduction. In the past, most discussions concerning the cooling fins of a heat
exchanger were confined to cases where the heat from the fin surface was eventually
dissipated by the surrounding convective fluid. For this case, the governing equation
is linear and the solution can be obtained without difficulty [1], However, as space
technology advances, a heat exchanger may have to be designed for an environment
where the only heat transfer mechanism is by radiation. Furthermore, in any space
vehicle design, the over-all weight of the vehicle is of utmost importance. It is, therefore,
desirable to know the fin geometry of least weight. The essential difficulty in dealing
with cooling fins when the convective transfer mechanism becomes insignificant arises
from the fact that the governing equation is no longer linear. Up to the present, the
solutions for this type of problem were obtained mainly by numerical method [2, 3].
It is difficult to optimize the result thus obtained.

The present paper presents a parametric solution for a rectangular cooling fin in
terms of known functions, from which the optimum geometry of the fin with least
weight is uniquely determined.

2. Statement of the problem. The governing differential equation of the temperature
T(x) in a rectangular thin fin as shown in Fig. 1 is

djl _ 2s m« _ q /j\
dx2 kb1 - (1)

TL b

Fig. 1

where

s = heat transfer coefficient,
k = conductivity of the fin material,
b = fin width,
a — a constant, equal to 1 —> 4 in actual application and assumed to be greater than

unity in the present problem.

*Received March 8, 1960.
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The boundary conditions for a long fin are

T = T0 at x = 0 (2)

^ = o at x = L. (3)

The cooling rate of the fin in terms of the rate of heat conducted out of the fin base is

dT
" " ~kl dx (4)

The problem may now be stated as: For a fixed fin weight (or area A = bL), determine
the value of b such that q is a maximum subject to the governing equation (1) and the
boundary conditions (2) and (3).

3. The temperature distribution. Though the solution of the system of Eqs. (1),
(2) and (3) can not be obtained in closed form, it is possible to derive a parametric
relation between T and x as shown below.

Multiplying Eq. (1) by dT/dx and integrating gives

(dry _
\dx) (a -fWbT° + 1 + C = °- ®

The constant C is determined by Eq. (3) and by assuming

T = Tl at x = L. (6)

Then,

o
Note that the boundary value problem is completely defined by Eqs. (1), (2) and (3).

The additional condition, Eq. (6), is used merely as a parameter which shall be uniquely
determined. From Eqs. (5) and (7)

dT
dx (8)

Introducing the new variables

t = (TL/Da+1, (9)

to = (TL/T0)a+\ (10)

Equation (8) becomes

11/2
t"-\l - = [4(a ^ 1)S]' T(La~l)/2, (11)

where fi = (a — l)/2(a + 1).
Integrating Eq. (11) gives

f1 /_1(1 - v)'1/2 dv = [4(a ^ 1)S]'/2n--1)/2 fx dx (12)
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or

B(/J, £ - §) = kb 1)S]' 2r^""/2(L ~ *)» (13)

where B is the complete Beta function and B, , the incomplete Beta function which is
defined for 0 < I < 1 and /3 > 0 [4], The two conditions for the existence of the Beta
function will be examined with regard to Eq. (13):

(i) when t = 0, Eq. (13) fails to give a meaningful solution. However, for this case,
either T —> which is physically impossible or TL = 0 which will be discussed at the
last section as a special case. For the present discussion, we assume 0 < t < 1 in Eq. (13).

(ii) when /3 > 0, a > 1. If a = 1, the problem is for the case with the ordinary
convective surface condition, for which the solution is available [1].

Under the restrictions of 0 < t < 1 and a > 1, Eq. (13) expresses the functional
relation between T and x with TL as the parameter. Furthermore, the values of T and x
have a one-to-one correspondence, since both sides of Eq. (13) are single-valued functions.
To determine the parameter TL , Eq. (2) is substituted into Eq. (13).

503, §) - B..C8, |) = [4(a (14)

After TL is calculated from Eq. (14) for a fixed physical condition, the rate of heat
transfer, Eq. (4), becomes

4sfc6 T
+ 1)J= T-L(a

] 1/2
rra + 1 rria + l\l/2

(Tq+1 - TV1)1'2. (15)

4. The optimum geometry. Equation (15) gives the rate of heat transfer in terms
of the parameter TL which has to be determined from Eq. (14). For a fixed A = bL,
Tl will vary with b, so that q is, in general, a function of b and T. If Eqs. (14) and
(15) are rewritten as

q(b, Tl) = - TVY2, (16)

p(b, Tl) = 5(0, |) - J3e.CS, h) - [4(a +fc1)SA2]l/V3/2na-1)/2 = 0, (17)

where q and p are now to be considered as functions of b and TL , the equivalent problem
of optimizing q will be to find the extreme values of the function q(b, TL) subject to the
subsidiary condition p(b, TL) = 0. The stationary point thus found gives the desired
optimum values of b and TL . The solution to this problem can be obtained by means
of Lagrange's multiplier m defined by [5]

§-L + m J^-°. (19)

Equations (17), (18) and (19) serve to determine the stationary values of b, TL and the
constant m. Eliminating m from Eqs. (18) and (19) gives
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1/2 _[(« ~ l)2sA2~l'/9 [TV1 - 2(2a + l)(g - l)"127r']1/3
L(« + 1 )kTl J (r0«+1 _ Tl+1)1/6

Comparing Eqs. (16) and (20), it is seen that t0 > (a — l)/2(2a + 1). Though Eqs.
(17) and (20) are sufficient to determine the optimum value of b by eliminating TL ,
it is more convenient to write Eq. (20) as

to = - 1 )-G + G1/2[24(a + 1) + G},/2], (21)

where

G = (a + l)kb3/(2a + l)sA2Trl (22)

and the positive sign in front of G' '~ is chosen because t0 > (a — l)/2(2a + 1). Equation
(17) becomes

B(p, h) - B.Sfi, J) = 2(« + 1)(2« + l)~1/2G~1/2to , (23)

where t0 is given by Eq. (21). It is seen that the transcendental Equation (23) contains
only the variables a and G. For a fixed a > 1 and under the conditions G > 0 and t0 >
(a — l)/2(2a + 1), Eq. (23) is satisfied by one, and only one, value of G which, in
turn, determines uniquely the optimum geometry of the fin from Eq. (22).

It remains to be shown that the extreme value of the function q(b, TL) does exist at
the stationary point thus found and that the extreme value is a true maximum. For
the existence of the extreme value, it is necessary that the two partial derivatives dp/db
and dp/dTL shall not both vanish at the stationary point [5]. It can easily be shown
that both derivatives will vanish only when TL = 0 which is excluded in the present
problem. The sufficient condition for the extreme value of q to be a maximum is that
d2q < 0 at the stationary point. This is indeed true if t0 > (a — l)/2(2a + 1).

5. Special case when TL = 0. In the above discussion, the case when TL = 0
is excluded. If TL = 0, C = 0 from Eq. (7). A direct integration of Eq. (5) with boundary
condition (2) gives

- <2«

q = (^-)1/27T+1)/2. (25)

It is seen that no maximum value of q exists for any finite value of b. The non-existence
of the extreme value is apparent since physically TL = 0 requires the fin length L —» cc.
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