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GENERALIZED THERMAL RESISTANCE
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1. Introduction. The thermal resistance of a conducting body V is usually defined
(see, e.g., [3]**) in terms of a harmonic function u(zx, , x, , x;), satisfying the boundary

conditions
w = {ul , on S,

U, on S,
u,m; =0, on §,,

where 8 = 8, + S, + 8, is the boundary of V, n; is the outward normal vector, and
u, and u, are constants. We shall refer to S, as the inlet, S, as the outlet, and S, as
the adiabatic surface of the body V.

The thermal resistance R of this configuration, i.e., the body V with given inlet and
outlet, is then defined by the equation

R@) = (u, — u)/Qw), (1.1

where

Q@ = [ w.mds,
5.
the total transmitted heat power.

By applying Green’s identity to Eq. (1.1), using the harmonicity of % in ¥, we obtain
the alternate forms

R = (w — u)’/D() = D(¢.)/Q(g)), (1.2)
where ¢; = u,;, Q(¢;) = Q(u), and the Dirichlet integrals D are given by

D) = D(q;) = fv 0:q: AV = fv wdV.

If u; — w, is interpreted as a potential difference and @ as total current, Egs. (1.1)
and (1.2) also give the electrical resistance of the configuration for unit electrical con-
ductivity. The two forms given by Eq. (1.2) are simply the familiar “E*/R”, “I’R”
relations between the power dissipation D, the potential drop £ = u, — 1w, , and the
total current, I = Q(u).

Since u; — u, is obviously the maximum temperature difference in the body V, R(u)
gives the maximum temperature difference for unit transmitted heat power and thus
serves as a power rating for the body, at least for these boundary conditions. Unfortu-
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mately, in contrast to the problem of electrical conduction, in practice one encounters
a wide variety of boundary conditions in heat flow problems. We shall show, in fact,
that the temperature rise in general is greater for given input heat power than that
given by the above Dirichlet conditions, so that R(u) is unsafe to use as a power rating,
unless, of course, it is certain that the above boundary conditions are satisfied.

Very often in practical problems the exact boundary conditions are unknown. In
the following, we consider two other boundary value problems, which we regard as
typical, namely the Neumann problem and the Robin-Neumann problem, both with
piecewise constant boundary values. We extend the definition of thermal resistance to
‘these cases in a natural and expeditious way and obtain upper and lower bounds, which
include the resistance in all three problems between them and thus serve as universal
bounds, at least for the class of problems considered.

2. The Neumann problem. The temperature v, again harmonic in V, now satisfies
‘the boundary conditions

Q/s, , on S,,
vn; = 0, on Sa ’

_Q/So ) on So y

‘where @ is the total input heat power. In this case the thermal resistance is not usually
defined. We may extend the definition, however, by using the analogy with electrical
conduction and requiring that the resistance R(v) again satisfy the usual “I’R’ relation
between the power dissipation D and the total current @, namely

D) = Q°R®).
If we apply Green’s identity, we obtain
R@) = (0 — ()0)/Q, 2.1

where the average inlet and outlet temperatures (v), and (v), are given by
On =S [ vas, o= 5" [ vas.
83 8o

As before, we have the alternate forms
R@ = (oh — ()o)*/De) = D(q.)/Q°, (2.2)

where now ¢; = v,; .

If we compare Egs. (1.1) and (2.1), we see that we can include both in a single
definition, if we define the resistance in general as the ratio of the average inlet-outlet
temperature difference to the total input heat power. This is the definition which we
shall adopt. It is particularly apt because it admits immediately of a simple physical
interpretation and because, at least in the two cases considered so far, it may be ex-
pressed in terms of the Dirichlet integral which is easily bounded.

3. The Robin-Neumann problem. We now consider a heat flow problem which we
regard as canonical and from which the two preceding problems may be derived as
special cases. We again seek a harmonic function w, now satisfying the boundary con-
ditions
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hy(w, — w), on §,,
w, n; = 0, on Sa ’
ho(wo — w), on S, ,

where w, and w, are constant inlet and outlet ambient temperatures and h, and h, are
positive, constant heat transfer coefficients.

These boundary conditions approximate a wide variety of modes of surface heat
transfer, including radiation, convection, and contact resistance. For large & the bound-
ary conditions approach the Dirichlet conditions satisfied by u and for small & (with
some reservations as to the character of the limiting process) the Neumann conditions
satisfied by v. We therefore expect that in this case the resistance will have a value
intermediate between R(u) and R(v), namely

R(w) < R(w) < R(@), 3.1)
where
Rw) = (w)y — (w)o)/Q(w),

according to our general definition of resistance. In the next section we obtain upper
and lower bounds on R(u) and R(v) which we then use to derive the inequality (3.1).

4. Upper and lower bounds on resistance. The problem of bounding the resistances
R(u) and R(v) is equivalent to bounding the corresponding Dirichlet integrals. Such
bounds may be obtained in a variety of ways (see, e.g., [2], [3], [4]). For our purposes,
the most direct approach is the use of Schwarz’s inequality, as suggested by Diaz and
Weinstein [1]. We first state the results and the conditions on the bounding functions
and then give a brief derivation of one of them.

We have

( — u)*/D(f) < Rw) < D®.)/Q*(®.), (4.1)
M = {N)’/D(f) < Re) < D(p))/Q, (4.2)

where, as before,

It

D) = [ 1.4.4V, Do) = [ pw.av,

Q) = pin; dS,

= 8 ) fds, o = 85! . fds.

In these inequalities f is any non-constant scalar function, continuous on V + §, piece-
wise continuously differentiable in V, and satisfying any boundary conditions of Dirichlet

type given on S. Thus in (4.1)
f = {ul , on S,

U, on S,

while in (4.2) it is unrestricted. The vector p, is any non-zero, solenoidal vector function,
having a continuous normal component across any surface in V, piecewise continuous
derivatives in V, and such that its normal component satisfies any given Neumann
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conditions on S. Thus in both (4.1) and (4.2)
p:: =0, in V,
pn; =0, on S,,
while, in addition in (5.2),
P = {Q/Sl , on 8
—-Q/S,, on 8,

As a sample, let us derive the upper bound on R(u). For two arbitrary vector functions,
p; and g; , Schwarz’s inequality takes the form

[D(p: , ¢))* < D(p) D(q.), (4.3)

where, using obvious notation,
D(p; , q) = fvP-'Q-' av.

If we set ¢; = u,; , this becomes

[D(p; , u.)])* < D(p;) D(w).
Green’s identity gives

Dp; ,u.) = fs upm; dS = (w, — u)Q(p,),
using the boundary conditions on p; and u. Thus

w — %)*/Dw) < D@.)/Q*®.),

which is the required inequality. The remaining bounds follow in so similar a fashion
that there is no need to reproduce their derivation here.

Now note that we may set p; = w,; in the upper bound on R(u) and f = w in the
lower bound on R(v), giving

R(u) < E(w) D(w)/Qw)((w); — (w)o),
R@) = Rw)Qw)(w): — (w)o)/D(w).
We now show that
D(w) < Qw)((w); — (W),
from which the inequality
R < R(w) < R() (4.49)
follows.

Green’s identity gives

Qw) = w,n; dS = hSy(w, — (w),)

83

= — w,n; dS = —hoSo('wo - (’w)o):

8o
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and

D(w) = h181w1<w>1 + hoSo’wo(w>o - h w? dS — ho w’ dS.

Sa So

2
w dS]

Schwarz’s inequality gives

S, | wdS > [

81 Sa

or

he [ wdS > hSiw)?

8

and similarly for the integral over S, , so that
D(w) < hySi{wh(wy — (W) + hoSo(w)e(wo — (Who) = Q(w)((w); — (w)o),

which is the desired inequality.

5. Conclusion. We have now shown that the thermal resistance, i.e., the average
inlet-outlet temperature difference for unit input heat power, in the case of the Robin-
Neumann problem is bounded below by the resistance R(u) for constant inlet and
outlet temperatures and above by the resistance R(v) for constant inlet and outlet
heat flux. We have also shown how upper and lower bounds on R(u) and R(v) may
be obtained. Thus we have a method for estimating the temperature rise which is rela-
tively independent of the specific nature of the boundary conditions. It is felt that this
method of obtaining broad bounds on temperature rise in many cases is much more
practical than, for example, the calculation of an exact solution. It is particularly suited
to the kind of problem encountered, for example, in preliminary design work, where
one knows little about the specific nature of the heat flow and where one may want
to evaluate the effect of changes in many design parameters.

From the mathematical point of view, the foregoing results are quite trivial. It is
interesting to note, however, that they provide another illustration of the complementary
nature of the Dirichlet and Neumann conditions. According to the Dirichlet principle,
among all functions having given constant values on inlet and outlet, the harmonic
function u makes the Dirichlet integral D(u) smallest. If we relax this condition and
require only that the admissible functions have a given difference of average values
between inlet and outlet, the Dirichlet integral is minimized by the harmonic function v.
‘The first result gives the lower bound on R(u), the second the lower bound on R(v).
‘The upper bounds may be similarly described, using the Thomson principle concerning
solenoidal vectors.
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