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ON THE THEORY OF THE PLASTIC POTENTIAL*
By HANS ZIEGLER, Zurich

1. Introduction. The theory of the plastic potential, proposed by v. Mises [1],
connects the yield condition and the flow rule of a plastic solid. In its generalized form
established by Prager [2], the theory may be stated as follows:

Let qk (k = 1,2, • • • , n) be the generalized strains, i.e. a set of coordinates specifying
the deformation of the plastic body in the sense of analytical mechanics, and let qk ,
ql denote respectively the elastic and the plastic components of qk . If the work done on
an infinitesimal increment of strain is given by

dA = Qk dqk , (1.1)

where the summation convention has been applied, the Qk are the generalized forces
in the sense of analytical mechanics or, according to Prager, the generalized stresses
corresponding to the coordinates qk .

The generalized states of strain and stress may be depicted by points with position
vectors q, Q in Euclidean n-space Ii„ , or by the vectors q, Q themselves. Defining the
scalar product of two vectors in Rn by

Q q = Quqk , (1.2)
we obtain for the work (1.1) the representation

dA = Q-rfq. (1.3)
Consider the solid in an arbitrary stage of the deformation process, and let Q denote

the actual state of stress. Any state of stress Q* which can be reached from Q without
plastic flow will be called non-plastic. All of the Q* constitute the nonplastic domain
R„ in Rn , and any stress increment of the type Q* — Q will be denoted as nonplastic1).
The yield limit is a hypersurface in Rn , defined by those nonplastic states of stress the
infinitesimal changes of which are not exclusively nonplastic.

The theory of the plastic potential firstly stipulates that the elastic strains q" follow
from the stresses Q according to the laws of elasticity. The plastic strain increment
dq" corresponding to given values of the stress Q and the stress increment dQ is zero
for any state of stress lying in the nonplastic domain but not at the yield limit. For
states of stress at the yield limit, dqv may be different from zero; it is secondly stipulated
that

(Q* - QWq" < o (1.4)
for any nonplastic stress increment Q* — Q, and that

dQdq°>0. (1.5)
In virtue of (1.4) the nonplastic domain Rn is convex.

*Received June 17, 1960.
'In Prager's or Koiter's terminology [3], R„ is the elastic domain and Q* an allowable stale of stress.

The notations used here emphasize the fact that ideally plastic as well as hardening solids are considered.
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2. Formulation of problem. So far, the theory of the plastic potential is but a
hypothesis. This has been emphasized already by v. Mises; besides, his version was
restricted to a volume element with strains «,,• and stresses tri; . The generalization of
Section 1 is due to Prager; the special form (1.4), (1.5) does not refer to a potential
function and was given by Drucker [4].

Several authors have tried to provide a basis for the theory (see [3], p. 180). Bishop
and Hill [5] have shown that (1.4) follows for the element of a polycrystalline aggregate
from plausible assumptions concerning the behaviour of the single crystals. Drucker [4]
has based the theory on a postulate regarding the work done on a prestressed element
by an external agency in a cycle of application and removal. The author [6] has suggested
a generalization of Onsager's theory of irreversible processes [7] to nonlinear cases,
thus providing a thermodynamic basis for the theory of the plastic potential.

Either one of these approaches is based in its turn on certain postulates some of
which are open to criticism [8], Thus, it seemed worthwhile for once to reject any kind
of postulate and to limit the scope of the investigation to a purely mathematical proof
for the theory in Prager's generalized form, based on the sole assumption that it holds
in v. Mises' sense for an element of volume. This proof has been provided by the author,
in [8] for rigid-plastic materials and in [9] for elastic-plastic solids. The present paper
gives a condensed version of the two articles and at the same time provides a simpli-
fication of the proof.

3. The rigid-plastic element. In a rigid-plastic solid, q" = 0 and hence q = q".
The local states of strain and stress are given by e,-,-, <r,, respectively and may be depicted
by the vectors e, s in Euclidean 9-space R,, . Defining the scalar product in R,, by

s-e = (Tata , (3.1)

we obtain for the work per unit volume done on an infinitesimal increment of strain

dA = (tij de{i = s-de. (3.2)
In virtue of the symmetry of the strain and stress tensors, the vectors e and s actually
lie in a linear subspace Rt of R<, . Here, the nonplastic domain may be defined according
to the rules of Section 1. If we assume that the theory of the plastic potential is valid
in v. Mises' sense, it follows from (1.4) and (1.5) that

(s* - s)-cte = (a* - <7„) dea < 0 (3.3)
for any nonplastic stress increment s* — s, and that

ds-de = dan den > 0. (3.4)

These relations also hold (with the equality sign) for states of stress below the yield
limit. In virtue of (3.3) the nonplastic domain is convex.

4. The rigid-plastic solid. The states of strain and stress of the whole body B are
given by the functions eu{xk), <ru{xk) respectively, either one of them depending on
the coordinates xk. These functions may be represented by vectors E, S in function
space F. Let the scalar product in F be defined by the volume integral

S-E = f (Tijtii dv (4.1)
J B

extended over the entire body B. This definition is admissible (see [10]), since it satisfies
the commutative law, S-E = E-S, the distributive law, S- (E + E') = S-E + S-E', the
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rule S • O = 0 for multiplication by zero and the associative law for scalars, (aS) • E = a
(S E). Besides, the definition provides F with a positive definite metric. On account of
(4.1), the work done in an infinitesimal increment of strain is

dA = J <r„- den dV = S-dE. (4.2)

The representation considered here is not restricted to kinematically admissible
states of strain nor to statically admissible states of stress; it holds for any states for
which the integrals in (4.1), (4.2) exist. The nonplastic domain F in F may again be
defined according to the rules of Section 1. In general, certain elements of B reach their
local yield limit for states of stress S still inside the yield limit of the whole body. Plastic
flow sets in when a sufficiently large domain of B has become plastic. At this stage, the
state of stress in any element of B either lies below or on its local yield limit. Since none
of the elements undergoes plastic flow in a nonplastic stress increment of the entire
body, it follows from (3.3) that

(S* - S)-dE = [ (er* - <r,.,.) deif dV < 0 (4.3)
J B

for any nonplastic stress increment S* — S. Also, on account of (3.4),

dS-dE = J da{i dtu dV > 0. (4.4)

Hence, the theory of the plastic potential, if valid for the element, likewise applies to
the body as a whole. Incidentally, relations (4.3) and (4.4) also hold (with equality
sign) for states of stress below the yield limit. In virtue of (4.3), also the nonplastic
domain F is convex.

5. Generalized strains and stresses. Section 4 provides a basis for the rigorous
treatment of a rigid-plastic body. In numerous cases, however, one is compelled to
simplify the problem by introducing generalized strains and stresses as defined in Section
1. This means necessarily that only states of strain are considered which can be de-
scribed by a finite set of parameters qk (k = 1,2, • • • , n). Such a reduction of the degree
of freedom can be realized by introducing additional constraints; in certain cases also
the elimination of originally existing constraints may result in a simplification (see
examples in [8] and [9]). It is obvious that this process is only justified as long as it
does not appreciably modify the actual state of strain.

The limitation considered here implies that only states of strain E are considered
which belong to a certain subspace Fn of F. It does not involve a similar restriction with
respect to the states of stress. Let EU) denote the state of strain in function space F
corresponding to the generalized strain qk = 1, g,- = 0 (i ^ k). The subspace Fn then is
defined by the states of strain

E = qkEw. (5.1)

It is reasonable to assume that the vectors E(i) are linearly independent. In this event,
there is a one-to-one correspondence between the vectors E in Fn and q in Rn. On account
of (4.2), (5.1) and (1.1), the work done by the stress S on an infinitesimal strain increment
dE belonging to F„ is

dA = S-rfE = S-E"' dqk = Qk dqk . (5.2)
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Hence, the generalized stresses are given by the scalar products

Q„ = S-E(". (5.3)
It follows immediately that any state of stress S in F is represented in Rn by a unique
vector Q which, conversely, is the image of an infinity of vectors S.

The straight section connecting the points in F with position vectors S', S" is given by

S = S' + o(S" - S'), (0 < a < 1). (5.4)
If Q, Q', Q" are the vectors in Rn corresponding to S, S', S", we obtain from (5.3) and
(5.4)

Qt = Ql + a(Q'/ - QQ, (0 < a < 1). (5.5)
Thus, the image in Rn of the section (5.4) is the straight section connecting the points
with position vectors Q', Q".

Since the nonplastic domain F is convex, any vector S* — S representing a nonplastic
stress increment lies entirely in F. Its image in Rn is the vector Q* — Q which, according
to the definition of the nonplastic domain, lies entirely in Rn . Conversely, any vector
Q* — Q in Rn is the image of at least one vector S* — S connecting two points of F.
Since F is convex, S* — S lies entirely in F; hence, any vector in Rn can be considered
the image of a nonplastic stress increment.

From (5.2) and (4.3) we obtain

(Q* - Q)-dq = (S* - S)-dE < 0, (5.6)
where Q* — Q is an arbitrary nonplastic stress increment. Likewise, on account of
(5.2) and (4.4),

dQ-dq = dS-dE > 0. (5.7)
This is the proof that the theory of the plastic potential, if valid for the element, like-
wise applies to the treatment of the entire body in generalized strains and stresses. In
virtue of (5.6), the nonplastic domain Rn is convex.

6. The elastic-plastic solid. In Section 1, no rules have been specified for the de-
composition of the strain into its elastic and plastic components. In the case of a volume
element, however, the decomposition is straightforward, provided the strains are
sufficiently small2. Let us postulate that in the expression

dA = s-de' + s-dep (6.1)

following from (3.2) the first product represents the infinitesimal increase of elastic
strain energy per unit volume, while the second one represents the work dissipated in
the infinitesimal strain increment de. Then, e° is the strain corresponding to the stress
s according to the law of elasticity, and ep is the permanent strain still present after
removal of the stress.

In order to define a similar decomposition for the finite body, let us postulate that
also in

dA = S-dE' + S-JEP (6.2)

2For a few critical observations, see [9].
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the products are respectively the increment of elastic strain energy and the work of
dissipation. Thus, E" is built up from the local elastic strains e' and E" from the local
plastic strains e". Here, Ee may be different from the state of strain corresponding to the
given loads if the body were elastic; also, E" is not necessarily the state of strain after
removal of the loads. On the other hand, the definition (6.2) implies that the work of
dissipation is

per unit volume and

dA* = s-de" = an dtVij (6.3)

dAv = S-rfE = J au del, dV (6.4)

for the entire body.
Let us now replace (3.2) by (6.3) and (4.2) by (6.4). Assuming that relations (3.3)

and (3.4) hold for the plastic strain increment dep instead of de, and retracing the demon-
stration of Section 4, we arrive at (4.3) and (4.4) with (dt*a instead of den and) dW
instead of dE.

For the representation in generalized coordinates, the situation is similar. Let us
postulate that the products in

dA = Qdq° + Qdq° (6.5)
are respectively equal to the increment of elastic strain energy and the work of dissi-
pation. Then (5.2) can be replaced by

dA" = S-dEr = Q-dq', (6.6)
and the remainder of Section 5 leads to (5.6) and (5.7) with (dE" instead of dE and)
dqv instead of c/q.

Thus, the results proved in Sections 4 and 5 also hold for the plastic strains in elastic-
plastic solids, provided the elastic and plastic strain components are defined by means
of strain energy and dissipation work3.

7. Observations. In an elastic-plastic solid, the elements which reach their local
yield limit are not surrounded by rigid material. Hence, plastic flow sets in as soon as the
first elements become plastic. It follows that under otherwise identical circumstances
the nonplastic domain of the elastic-plastic solid is usually distinct from the one of the
rigid-plastic body. Moreover, any plastic flow is apt to modify the nonplastic domain.
Hence, the yield limit of the elastic-plastic solid undergoes a continuous transformation
as the plastic flow proceeds towards collapse. On the other hand, the yield limit of a
non-hardening rigid-plastic solid is always the same.

In order to determine the nonplastic domain Rn in an arbitrary stage of the defor-
mation process, it is necessary to consider the actual state of stress S. From the general-
ized stresses Q alone no information concerning the yield limit is available. In the case
of a non-hardening rigid-plastic body, the yield limit must be determined only once.
Once it is known, the theory of the plastic potential may be applied in the sense of
Section 1, and the problem can be treated henceforth in generalized strains and stresses.
In fact, this is the reason why Prager's version of the theory offers an essential simpli-

3As, e.g., in [6].
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fication. In the case of an elastic-plastic solid, however, one is compelled to keep track
of the continuous changes in shape of the yield limit. Since this requires that the actual
state of stress S be pursued throughout the deformation process, the use of generalized
strains and stresses does not seem to offer any advantages here, except, of course, in
limit analysis.

Bibliography

[1] R. von Mises, Mechanik der plastischen Formanderung von Kristallen, Z. angew. Math. Meeh.
8, 161 (1928).

12] W. Prager, Am introduction to -plasticity, Addison-Wesley, Reading, Mass. 1959, p. 13.
[3] W. T. Koiter, General theorems for elastic-plastic solids, in I. N. Sneddon and R. Hill, Progress in

solid mechanics, North-Holland Publishing Co., Amsterdam 1960, p. 172.
[4] D. C. Drucker, Some implications of work hardening and ideal plasticity, Quart. Appl. Math. 7,

411 (1949).
[5] J. F. W. Bishop and R. Hill, A theory of the plastic distortion of a poly crystalline aggregate under

combined stresses, Phys. Mag. (7) 42, 414 (1951).
[6] H. Ziegler, An attempt to generalize Onsager's principle, and its significance for Theological problems,

Z. angew. Math. Phys. 9b, 748 (1958).
[7] L. Onsager, Reciprocal relations in irreversible processes, Phys. Rev. 37 (II), 405 (1931) and 38 (II),

2265 (1931).
[8] H. Ziegler, Ueber den Zusammenhang zwischen der Fliessbedingung eines starrplastischen Korpers

und seinern Fliessgesetz, Z. angew. Math. Phys. 11, 413 (1960).
[9] H. Ziegler, Ueber den Zusammenhang zwischen der Fliessbedingung eines elastisch-plastischen Korpers

und seinern Fliessgesetz, Z. angew. Math. Phys. 12, (1961).
[10] J. L. Synge, The hypercircle in mathematical physics, Cambridge University Press 1957, p. 37.


