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HIGH FREQUENCY VIBRATIONS OF CRYSTAL PLATES*
BY
R. D. MINDLIN
Columbia University

1. Introduction. In this paper, Cauchy’s [1] two-dimensional equations of coupled
flexural and extensional motion of crystal plates are extended to the next higher order
of approximation so as to accommodate the frequencies of the two lowest thickness-
shear modes. The equations obtained are also extensions of previous equations [2] in
which flexure and the same thickness-shear modes were included, but coupling with
extensional modes was omitted. The new equations are deduced from the three-dimen-
sional equations of linear elasticity by a procedure based on the series expansion methods
of Cauchy [1] and Poisson [3] and the variational method of Kirchhoff [4]. Comparison
of the appropriate solution of the resulting equations with Ekstein’s [5] solution of the
three-dimensional equations, for an infinite plate, reveals close agreement between the
two frequency spectra, over the extended range of frequencies, for all five branches of
the spectrum of the two-dimensional equations. This indicates that solutions of these
equations, for bounded plates, will give reliable results, over the extended range of
frequencies, since the modes of bounded plates, in that range, are composed essentially
of coupled overtones of the first five modes of vibration of an infinite plate.

In addition to the derivation of the approximate equations, theorems of uniqueness
and orthogonality are established and some general conclusions are drawn regarding
solutions in rectangular coordinates and vibrations of rectangular plates.

2. Expansion in power series. The plate is referred to rectangular coordinates
z; (z = 1, 2, 3) with z, and x; in the middle plane and the faces at , = = h. The com-
ponents of displacement u; (j = 1, 2, 3) are expanded in power series of the thickness-
coordinate:

L--]
0 ( 2 (2)
ui = 2 2u = u® + zul + 2Gu® -, 1)

n=0

where the u{™ are functions of z, , z; and the time, ¢, only.

Stress-equations of motion. The series expression for u; is substituted in

[ Tuss = pusid) w27 = 0 @)
1 4

which is obtained from the variational equation of motion, deduced from Hamilton’s
principle [6]. In (2), the integration is over the volume, V, of the plate; the T;; are the
components of stress; p is the density; and the summation convention for repeated
indices is employed, as is the comma notation for differentiation with respect to the
z; and the time ¢.

When the integration with respect to x, , from — A to h, is performed in (2), the
result is
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[ S (re g 1 r0 — o S Ha) 0 aa =0, ®

n=0 m=0

where A is the area of the plate and
h
TP = [ wlydn, FP =@l
—n

H = {2h”'+"“/(m +n+ 1), m+n even (4)
0, m +n odd

Since (3) must hold for all A and arbitrary éu{”, the quantity in parentheses must
vanish and we arrive at the stress-equations of motion of order n

@®
(n) (n—1) (n) __ (m)
T —nTg; +F"=p ZHmfu: tt .
m=0

Strain. The three-dimensional components of strain, S;; , are expressed in terms of
the u; by

ll = 2(us i + Uj, ') (5)
Upon substituting (1) in (5) we obtain, after a rearrangement of terms,
Sii = Zo x;SE:)’ (6)

where
Sf;t) = %[ (n) + u(n) + (n + 1)(62,u(”+1) + 8,2u("+l))]

in which §;; is the Kronecker symbol.
Stress-strain relations. In three dimensions,

T;:; = i Cijki = Ciikt = Criij ™
Sii = 8T Sijkt = Siikt = Skiij )
where c¢,;;; and s;;;; are the elastic stiffnesses and compliances, respectively.

The expressions for the two-dimensional T'{? in terms of the S{? are obtained by
inserting (6) in (7) and (7) in the first of (4), with the result

T,(',.) Ciik E HmnS(M)- (9)

Energy-densities. A strain-energy-density, U, and a kinetic energy-density, K, both
reckoned per unit area of the plate, are defined by

h © ™
(m) Q(n)
U= %f ciileiiSkl dzx, = %Ciikt Z Z HmnSi:'” Skl ’
-h

m=0 n=0

[V]s

(m), (n)
Hm 1 tu: t e

A ®
K = %fh pU;, Ui, dz, = 3p E

m=0 n=

=]

It may be noted that
T® = aU/aSY; a8/ oS = i .
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3. Truncation of series. We retain only the zero and first order components of
stress and strain and we write, tentatively, from (9),

T,((,)) = 2hc,-,~,,,Sf,?), (10)
T::) = — nlclS(l)' (11)

The components S and S{} involve only the displacements ».” , u{" and u{® and
we neglect those of higher order. Then, following Cauchy, we neglect the velocity us')
in the kinetic energy and equations of motion and provide for the free development of
the strain S{3 (= u") by setting T53’ = 0 in (10). The condition 75’ = 0 permits the
elimination of S$3’ from (10), with the result, again tentative,

T,(,O) = 2hg,~,-k,S,(c?), (12)
where

Giiki = Cijri — Cij22 Ca211/Caz22 -

It may be observed that, because of the form of g, only five components of stress and
five components of strain remain in (12).

The first order terms, T'{} and S}, are treated in a similar manner except that all

three velocities u{’, are neglected and free development of the three strains S5} is

accommodated by setting 75’ = 0 in (11). Upon elimination of the S}’ from (11), we
arrive at

T(l) = %ha'y.,bwsg); a, b, c, d= 1, 3,

where

'Yabcd = Aabcd/l sabcd l

in which |s,;.q| is the determinant

S Sues 28113
I Sabed | = | 83 S33ss 283313
281511 281333 481313

and A,,., is the cofactor of that element of |s,;.«| which contains 8,4 .

As the final step in the process of truncation, the thickness-shear strains S5’ and
Ss3 are replaced by k,S5Y and k;S{3 in the strain-energy-density, where k, and k, are
correctlon-factors which may be used to adjust the thickness-shear frequencies to their
exact values; thus compensating, in part, for the omission of terms of higher order in
the series expansions. The correction-factors may be introduced conveniently by re-
placing g;;,; with

g = kiyiokivi-20:x; (nOsum),
where m and n are the powers
m = cos’ (ijr/2), n = cos’ (kir/2).

Thus k7, ;_, (or k},,_,) is equal to &, , k; or 1 according as 7 4+ j (or k + 1) in g,;4; is
3, 5 or neither, respectively.
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4. Recapitulation. The equations remaining, after truncation of the series and
adjustment of the terms retained, are [7]

Energy-densities*

U = hg¥uSiP 8l + 3h*vaeaSe Set’, (13)
= ph(ui i’y + ulwgl). (14)
Stress-strain relations
T = aU/a8Y = 2hg.,,,,S,,, , (15)
TS = 8U/GS(” 'Yabcdscd , (16)

where 987 /98? = 0,7 = j; 8%/38 = 0,a # b.
Stress-equations of motion
T.(?); + F;O) = 2hW:(oit ’

(17
TL, — T + FP = hpuél)“ . (18)
Strain-displacement relations
8 = 3@} + u + su® + su), 19
S:ll;) = 2(u(l) +u(l) (20)

Note that, although S5’ = w;" is contained in (19), neither of the two appears in any
other of the Eqgs. (13)- (20) because the zero order components of strain always occur
as products with g%,, and the latter is zero when 7j or kl is 22. Hence, there are only
eight components of strain and eight components of stress to be considered. The com-
ponents of strain are related through the four compatibility equations

(0) (1) 1y (0) (0)
11 33 + S38 1 = 2Sl3 13 » 33,1 13,3 — S23,l3 - S12.33 )

(21)
Sitss + S = 285, s = Sith = Sita — St -
Displacement-equations of motion
2hg¥n(uits + Saui’)) + Fi” = 2hpus, (22)
%hsyabcdug')ia - 2hg§"bu(uk.z + 82kul(l)) + FP = 3n Puil:z . (23)

These equations are closely related to several predecessors. Thus, if the thickness-shear
and flexure are eliminated by setting the transverse shear forces T2 and the couples
TS’ and Fi* equal to zero, the first and third of (22) reduce to the Cauchy-Vmgt (1, 8]
equations of low frequency extensional motion of thin plates:

2h‘Yabcau¢ w + B0 2hpul§?il . (29

Conversely, if the extensional deformation is suppressed by setting u!” = F® = 0,
(22) and (23) become equations of coupled thickness-shear and flexural vibrations [2]

2hg;"m(u§°§., (x)) + F(O) = 2hﬁu;°)u ) (25)

%hs‘)’abcdugc)ia 2hgam(u(°) l)) + F(l) = 2h ﬁu;l)tt . (26)

*Here and in the sequel: indices ¢, j, k, I range over 1, 2, 3; indices a, b, ¢, d range over 1, 3.
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Alternatively, in the case of isotropy, (22) and (23) become
BUes + N+ Wuas + 3TF” = ol @7
K'usre + ued) + 37FY = puslt, (28)
Ble + N+ Wude — 3K @l + w?) + TR = ok, (29)

where ' = 2uM\/(A 4+ 2ux) and X and u are Lamé’s constants. Equations (27)—(29) are
also the isotropic forms of (24)-(26). Equations (27) are Poisson’s equations of low
frequency extensional motion of thin plates [3 and 6, p. 497] or, what is the same, the
equations of motion in generalized plane stress. Equations (28) and (29) are equations
of flexural motion of isotropic plates with rotatory inertia and transverse shear defor-
mation taken into account [9]. In the one-dimensional case they have the same form as
the Timoshenko beam-equations [10] and in the case of equilibrium they have the same
form as Reissner’s plate-equations [11]. Finally, by setting the transverse shear de-
formation, S{2, and the rotatory inertia, 2h’pu ('), equal to zero, (22) and (23) may
be reduced to equations equivalent to Cauchy’s [1].

5. Correction factors. The values of k, and k; are found by equating the thickness-
shear frequencies obtained from (23) with the corresponding ones obtained from the
three-dimensional equations.

In (23), let F{¥ = u{” = 0and u’ = A}’ exp swt, where the A" are constants.
Then (23) become

g;‘bszs” = % hzszlEl)-
Upon equating to zero the determinant of the coefficients of the A", we have
I gisza — g 0 | =0, g = %thwz (30)

which gives two frequencies, say w, and w; . These are to be equated to the two lowest
roots of the frequency equation

l Caj21 — C 0;; | =0, c = 4ph2(.02/1l'2 3D

for the fundamental thickness-modes, as obtained from the three-dimensional equations
[12]. The two equations yield a pair of equations which may be solved for k, and k; in
terms of ratios of the c;;; .

As an example, consider the case of monoclinic symmetry with z, the digonal axis
so that ¢,12; and ¢,,,3 are zero. Then the roots of (30) are

g1 = k:gzzzl = kfczm s 0’? = 391/Ph2;
gs = k:gzazs = k:(czaza — 03223/02222); ws = 3ga/ph2

and the two lowest roots of (31) are

2 2 2
€1 = Cz121 , w; = we/4ph%,

€ = %{02222 + €325 — [(Ca222 — 02323)2 + 403223]1/2}, w: 7263/4ph2.

Equating corresponding frequencies, we find

kf = 72/12, k: = 7|'2C3/1292323 . (32)
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6. Straight-crested waves in a monoclinic plate. The adequacy of Egs. (13)-(23),
for the prediction of frequencies of vibration of bounded crystal plates, may be judged
by a comparison of the five-branched frequency spectrum of an infinite plate, as obtained
from (22) and (23), with the first five branches of the spectrum obtained from the three-
dimensional equations. This is because the modes of vibration of a bounded plate are
composed essentially of the anharmonic overtones of the modes of an infinite plate, as
described in Secs. 16 and 17 of Ref [13]. Because of its importance in technology, the
frequency spectrum of straight-crested waves traveling along .the digonal axis in the
AT cut of quartz is chosen as the basis of comparison.

Quartz is a trigonal crystal (six elastic constants) and the AT cut is a plate which
contains a digonal axis and whose normal makes an angle of 35°15’ with the trigonal
axis [14]. When referred to rectangular axes in and normal to the plane of such a plate,
the stress-strain relation has monoclinic symmetry (thirteen constants). With z, the
digonal axis in the plane of the plate and z, the axis normal to the plate, the values of
the thirteen constants, as computed from Bechmann’s [15] values of the six principal
constants, are, in units of 10° newtons per square meter,

Ciinn = 86.74: Ca323 = 38.61 Cii22 = _8.26 Coo33 = _7.42
Ca990 = 129.77 C3131 = 68.81 Cii33 = 27.15 Cao23 = 5-70

C3333 = 102.84 Cyi212 = 29.01 Ci123 = ~3.65 C3323 = 9.92
Cio13 = 2-53
while

Ci113 = Ca213 = C3313 = Ca313 = Cry12 = Ca212 = Caz2 = Coziz = 0. (33)

Then, in (22) and (23), let F{” = F{® = 0 and

u® = A” exp i(tr, — wi), w" = AV exp i(kr, — wi).

As a result, it is found that the first of (22) is coupled only with the second of (23) and
the first (23) is coupled only with the second and third of (22). Thus, the general quintic,
relating o’ and £, reduces, in this case, to a cubic and a quadratic

gluab” — p’ glat’ —1g%nf
ghif®  cuut’ — po’ —igtnk =0
Bih7’ghnk R Tguanek  vuud’ + 3h7ghie — o’
gung” — po’ —1gti20¢ = 0.

3ih‘2gi"m$ "7’131352 + 3h_29;323 - P“'z

The roots of these equations are plotted in Fig. 1 to dimensionless coordinates

Q= w/(1r/2h)(61212/p)”2, ¢ = 2th/7

The three branches marked flexure, face-shear and thickness-shear are the roots of the
cubic, while the branches marked extension and thickness-twist are the roots of the
quadratic.

The five branches are to be compared with the first five branches of the analogous
solution, by Ekstein [5], of the three-dimensional equations. The results of detailed
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computations [16, 17] show correspondence to at least three significant figures over most
of the range covered by Fig. 1. The asymptotic behaviors of the four branches which
intersect at @ =0,¢ = 0

Q= ¢2(7"/2)(’Yun/301212)1/2 (flexure),
2 = ¢(vi313/C1212)""* (face-shear),
2 = ¢(y111/Cr212) " (extension),
Q= _¢2(7r/2)(71111/301212)1/2 (thickness—shear)
are the same, for the approximate and exact equations, due to the method adopted in
the derivation of the former. The remaining branch comes to zero frequency at
1 = (Y11116s/Y131301110) "° = 0.7456

in the approximate equations and 7¢ = 0.7467 in the exact equations. In the high fre-
quency range the important frequencies, in the usual applications, are near @ = 1 and
the important branches are the thickness-shear and flexural branches. At @ = 1, the
thickness-shear branch is exact, due to the choice k2 = #°/12; the flexural branch in the
approximate equations has ¢ = 1.2483 whereas the exact value is ¢ = 1.2417.

The approximate equations should not be used for frequencies so high that branches
higher than the fifth cannot be neglected. In the AT cut of quartz the sixth branch has
a real minimum at a value of @ slightly less than 2.0 [16]; however, due to the likelihood

Q /
T

/ N f

- 05
TT=THICKNESS-TWIST
TS = THICKNESS-SHEAR
E =EXTENSION
FS=FACE-SHEAR
F = FLEXURE
0.5 (0] 0.5 1.0 1.5
i$ ¢

Fie. 1. Frequency spectrum.
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of the contribution of an edge-mode from the complex segments of the sixth and seventh
branches [17, 18], applications of the equations should be confined to @ < 1.5.

7. Uniqueness of solution. A theorem analogous to Neumann’s* leads to initial and
boundary conditions sufficient to assure a unique solution of equations (15)— (20)

Consider two systems of the five displacements, eight strains (omitting S53’') and
eight stresses which satisfy the eight stress-strain equations (15)-(16), the five stress-
equations of motion (17)-(18) and the eight strain-displacement equations (19)-(20).
Let the differences between corresponding components of displacement, strain and
stress constitute a “difference-system’ of those quantities. We form the equation

t
[ @t [ @@+ FO = 2nouus?
to
+ (T‘g)a (0) + F(l) — %hapuf,”,,)um] dA O (34)
in which all the components are those of the difference-system and ¢, is an initial time.
Now
t
2hp [t L W a® + Wudut) dA = fA (K — Ko) dA, 35)
to
where K is the kinetic energy-density of the difference-system and K, is its value at ¢, .
Also
T(O) ugoz + (T(ll:) ;g) u(l)
17,3 al a
(T(O) (0)) + ( (;)u;lz — T(O)u(o)'_ T(;)u;‘); ég)uél)
117 1. ai a t
= (T + TP, = T + 8.0 = Tl
(T(O) (Oi + T;;)u;li .= 1Tf(l))(u(0) (0) + 62.'“(1)
+ 52 (l)) + 1T(l)(u(l) (l; .
l ¢ ’
= TPu? + Tu).. — QU/3SP)SY, — (GU/683)S
= @Pu + TPu o — U,

where U is the strain-energy-density of the difference-system. Hence
J [ rea + @ - it a4

f dt 99 n(TPul + TS s = [ (U - Uyad Go)
in which the line integral is around the boundary, C, of the plate and the n, are the
direction cosines of the outward normal in the plane of the plate. In the transformation
from the surface integral to the line integral, it is assumed that the compatibility equa-
tions (21) are satisfied. Finally, using (35) and (36) in (34),

f (U + K) d4 = f (U, + Ko dA + f dt f (FOuU, 4+ FOub) da
+ f dtjf; nTOUO 4+ TOud) ds. (37)

*Reference [6], p. 176.
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Then conditions sufficient for a unique solution are established by the usual argument
based on the vanishing of the right hand side of (37) and the positive definiteness of
U and K. It may be seen that, in addition to the initial values of u{”, u{", u{®, and u{"} ,
there are five conditions to be specified at each point of the interior of the plate and
five conditions at each point of the edge. In terms of orthogonal coordinates «, 8, z, ,

the interior conditions are one member of each of the five products
(0), (0) 0), (0) (0), (0) (1), (1) (1), (1)
Fa Ua Fp Ug "y 2 Uy 'y Fa Us Fﬂ Ug .

In terms of orthogonal coordinates n, s, z, , the edge conditions are one member of each
) ) )
of the five products
(0) (0) (0) (0) ( ) (0) (1), (1) (1), (1)
T us Tidu, T T u,  Tulu (38)

, .

The first two of these products give the boundary conditions of generalized plane stress
and the last three give the boundary conditions of Reissner’s equations of flexure [11].

8. Orthogonal functions. A theorem analogous to Clebsch’s* may also be established.
Consider two solutions

@, w") = @7, u"") exp w,t
@, w") = @, u,"") exp iw,t
of the homogeneous (F;” = F{" = 0) stress-equations of motion, so that the equations

2 (0) ) r
2ohutu(” = —T7,

32 (r _ (l)r (0)
%Ph WU, = + Ty,
2 (0)e (0)s
—2phewu; =Ty,
§Pha 2 (l)l T(l)a _ (0):

are satisfied. Multiplying these equations by u;”*, ui"*, u{”", u;"’", respectively, adding
and integrating over the area of the plate, we obtam, on the left hand side,

0 2
2hp(wf _ w?)f (u§°)'u§ s + h (l)r (l)n) dA
A
and, on the right hand side,
f (T,(?): ](O)r T'(‘l)):ul(o)s + T.::); (1)r T;l): ;l)a + T(O)r (s (O)s (l)r) dA

The latter, by a process similar to that employed in the preceding section, may be
transformed to

2hf [g”kl(s'((’))ss(o)r S:?)rs(o)s) + lh‘Yabcd(S(l)s (l)r (l)r (l)s)] dA

+ f na(T(O)s 0yr __ T:?)ru;O)c + T(l)a ()r T:;)ruél)a) ds.
The integrand in the surface integral vanishes identically. The integrand in the line

*Reference [6], p. 180.
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integral vanishes for any one of the thirty-two sets of edge-conditions obtained by
equating to zero one member of each of the five products in (38), or for any of the associ-
ated conditions of elastic support. Then, if w, £ w,

f (u(O)r (0)e + lh? (Dr, (l)s) dA = 0

Some observations may be made regarding normal modes of rectangular plates. In
the general triclinic case there are no solutions of the displacement-equations of motion,
(22)-(23), with each of the five components of displacement a single product-function.
However, such solutions are possible for monoclinic and higher symmetries.

Thus, in the monoclinic case, where (33) hold, (22) and (23) are satisfied by the
four sets of displacements (and no others)

9 = A{” cos (r, + pr/2) sin (¢x; + qr/2) exp iwt,

us” = A% sin ((z, + pr/2) cos ({x; + qw/2) exp iwt,

us” = As” sin gz, + pr/2) cos (§25 + qn/2) exp iut, (39)
w” = A" cos (g, + pr/2) cos (fzs + qm/2) exp twt,

us? = A3V sin (g2, + pr/2) sin (§z; + g7/2) exp iwt,

p=20,1; ¢g=0,1

subject to a quintic equation relating «°, £* and ¢*. Fora plate x, = &+ h, , 3 = =+ ks,
normal modes, in which each displacement is a single product function, are possible if
and only if, on x, = £ A, ,

u;o) — u;O) — uél) — T(O) = l(ll) — (40)
or T =T =T = u® = u® = 0
and, on x3 = =+ hs,
uz(o) — u;O) — ul(l) = Tl(g) = ;;) — 0 (41)
or 2(:(3)) — (0) —_ Tl(;) = u :0) = u;l) 0’
whence
¢ = mw/2h, , ¢ = nw/2h; ; m,n=20,1,2-.- (42)

and the frequencies are given by the five roots of the quintic for each m and n.

The first set of (40) and the first set of (41) are the conditions analogous to simply
supported edges in the elementary theory of flexure; but note that, in the present case,
(41) are not obtained from (40) by interchange of indices 1 and 3. As in the elementary
theory, solutions in closed form are not possible, in general, if all four edges are free;
but closed solutions may be obtained with one pair of parallel edges free and the other
pair under conditions (40) or (41). Then each of the displacements in (39) is given by a
sum of five functions and one of the sets of roots (42) is replaced by the rootsof a 5 X 5
transcendental, determinantal equation. There is one exceptional case of a solution in
closed form, with all four edges free [19], analogous to the Lamé modes of an isotropic
plate.
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