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SCATTERING FROM RANDOM LINEAR ARRAYS WITH CLOSEST APPROACH*
By

Z. A. MELZAK
The University of British Columbia, Vancouver, Canada

1. Probability distributions for the echo returned from a random linear scattering
array are of some importance in several different situations, especially in connection
with the use of radar and sonar. In the simplest case n identical isotropic point scatterers
are placed at random on the interval [0, L\, the source of radiation is at the point (—s, 0)
which is sufficiently far from the origin so that the ratio (s + rCi)/(s + x2) is sufficiently
close to 1 for any two points Xi and x2 on [0, L], and the length L is an integral multiple
of the wave-length X. The problem of finding the probability density for the components
of the scattered signal reduces then to finding the joint probability density Wn(X, Y)
for the components of the vector

<t> = ( X) cos (2irx,/\), X) sin (2irx,/X)),
1 i-i '

where each variable Xj is taken from the uniform rectangular probability distribution:
Pr (Xj < x) = x/L, 0 < x < L. The probability density for the amplitude of the scattered
signal is obtained in terms of the probability density Wn(R) for the quantity R =
(X2 + F2)1/2. It follows that aside from some normalization factor the problem is
formally equivalent to the classical isotropic plane random walk.

If the scatterers are spheres of radius r, it may still be convenient to regard them
as points, but with the additional restriction that no two points are closer than 2r.
This assumption also fits the case where each scatterer has a radius of repulsion, within
which no other scatterer may enter. We shall consider here the corresponding scattering
problem: to find the probabilities Wn(X, Y) and W J It) under the restriction that the
i% point scatterers on [0, L\ are not allowed to be closer to each other than a, 0 < a <
L/(n — 1), and are otherwise at random. Our approach will be mainly geometrical,
and we shall begin by finding the sample space of the configurations.

2. We start with a well known problem in elementary geometrical probability: on
the segment [0, L] n points are taken at random, given a number a, 0 < a < L/(n — 1),
what is the probability P(n, a, L) that no two points are closer than a? If n = 2, then
the sample space of pairs of points 0x\ , x2), 0 < .t, , x2 < L, is the square of side L;
let D be its diagonal through the origin, and draw the two lines parallel to D at the
distance 2"1/2 a from it. The hexagonal subset of the square, contained between these
two lines, is then the sample space of the forbidden configurations (xx , x2) with
| Xi — x2 | < a; the remainder of the square consists of two triangles which can be
moved together to form a square of side length L — a. Hence, by the randomness assump-
tion, P(2, a, L) = (L - af/L2 = (1 - a/L)\

The general case can be handled in the same way. In the n-dimensional Euclidean
space En we consider a Cartesian coordinate system with the n axes , • • • , Xn .
Let H be the hypercube

H = {(x! , ... , xn) : 0 < x{ < L,i = 1, ... , n};
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H is the sample space of all n-tuples of points on the segment [0, L\. Let I,• be the interval
[0, L] on the X-axis, and in the two-dimensional square face $»•,• = I{ X /,• let £>,,• be
the diagonal through the origin. Let be the hexagonal subset of Szi , consisting
of all points no further from Da than 2~1/2a. Let Fa be the Cartesian product of Bu
and all Ik ,k 9^ i, j. That is,

Fa = {Oej , • • • , xn): (Xi , x,)iBu , 0 < xk < L,k ^ i, j}.

Then Fis the sample space of those n-tuples (xt , ■ • ■ , xn) for which | x{ — x,- | < a-
Hence the sample space of the allowed configurations, that is, of all n-tuples (xi , • • • , xn)
such that | Xi — x,- \ > a for all i and j, i 9^ j, is the set

H — VJ Fa .
1<»<»<«

Therefore by the randomness assumption

P(n, a, L) = vol (H — U Fti)/vol H. (1)
1<»<J<»

When the (^j sets Fis are removed from H, the remainder II — F{j consists

of n\ congruent simplexes. These can be assembled by a sequence of translations so as
to form an w-dimensiorial hypercube II' of edge-length L — (n — l)o. The required
translations are as follows: for i = 1, ■ • • , n let denote the vector in En whose i-th
coordinate is —a and all others are 0, now translate by £; (by £,•) every one of the n\/2
simplexes, which lies on the same side of F{j as the positive half of the X,-axis (the
X,~axis), and carry out this operation for all i and j, 1 < i < j < n. We have now by (1)
P(n, a, L) = vol H'/vol H, and therefore

P(n, a, L) = [1 - (n - 1 )a/L]n, (2)

which is the well known solution of the problem, [1], [2]. An equivalent way of expressing
it is the following: let n points x, , • • • , x„ be placed at random on the interval [0, L\,
let u — minj<# | xt — x,-\ be the nearest approach of any two of the n points, and let
Pn(u, L) be the probability density for m; then

nL/(71 —1)

P(n, a, L) = / Pn{u, L) du,
J a

and so by (2) we obtain

Pn(u, L) = [n(n - 1)/L][1 - (» - 1 Ju/L]""1, 0 < u < L/{n - 1), (g)

= 0 L/(n — 1) < u.

The fc-th moment of u is

Hn.k = J u Pn{u, L) du = ^ k J \L/(n - 1)]\

the mean is L/(n2 — 1) and the standard deviation is [L/(n2 — 1 )][n/(n + 2)]1/2. It
may be observed that if n —* 00 and a —» 0 so that n'a —> a, 0 < a < , then

lim P(n, a, L) = P(a, L) = exp (—a/L);
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and if n —> oo and L —> °° so that L/ri —» 0, 0 < 0 < ®, then

lim P(n, a, L) = P(/3, a) = exp ( — a/fi), lim n„fk = k\ 01.

We observe further that if a <5C L then (2) may be written as

P(n, a, L) = 1 - 2(fya/L + 0{d /L'). (4)

We consider next the analogous problem for fc-tuple clumping: n points are taken
at random on the interval [0, L\, an integer k and a number a are given, where 2 < k < n
and 0 < a < L, what is the probability P(k, n, a, L) that no k points lie on an interval
of length a? Equivalently, if a segment of length a is dragged along [0, L], Pile, n, a, L)
is the probability that this segment never covers more than 7c — 1 points at a time
Again, if n events are to occur at random times during the time interval [0, T]
P(k, n, t, T) is the probability that no k events occur within a time interval of length r.
This problem is more difficult than the previous one, but by a similar geometrical
reasoning it can be shown that if a L then

P(k, n, a, L) = 1 - fcQca/L)'-1 + 0{ak/Lk). (5)

An outline of the proof follows. Let H be the same hypercube as before, and let the
sets , • • • , /„ be as previously defined. Let , i2 , • • • , ik be k integers, such that

1 < z'i < i2 < • • • < ik , then X I,, X • • • X Iit is one of the {^) 1c-

dimensional faces of H, which contain the origin. Let be the longest diagonal
of the fc-dimensional hypercube , passing through the origin. Let K(p) denote
the /c-dimensional hypercube of edge-length a, whose center is the point p, and whose
edges are parallel to the coordinate axes Xu , , ■ ■ • , Xik. In analogy to the previously
considered sets Bif , define

n ( U K{V)),
ptDiiia • "ik

and let Fili2...ik be the Cartesian product of with all the 7,'s, j i\ ,i2, ■ ■ ■ , ik ■
That is,

Pi { 0^1 J %2 j ' ' ' j %n) • (%ii ) ) J %i x * a * * * i k J

0 < Xj < L, j 7* ii ,i2 , ■ ■ ■ , ik) ■

Then Fis the sample space of all w-tuples , • • • , xn), for which the points
corresponding to xix , xia, • • ■ , xik are in the forbidden configuration, that is, are covered
by a segment of length < a. Hence by the randomness assumption

P(k, n, a, L) = vol (H - U FUi,...it)/vol H,
where the union is taken over all the (^j selections of the integers i, , i2 , • • • , ik • By

using the inclusion-exclusion principle, [3], and some elementary volume estimates,
it may be shown that

vol (H - KJ F,lU...ik) = vol H - £ vol Fiti,...(l + 0(ak/Lk).
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Since there are (^j sets Fil<a...il, and since the volume of each one is Ln~k[kLak~1 + 0(a1)],

(5) follows at once.
A different generalization of the first problem is the following: let A = (a,-,) be an

n X n real matrix with aie - ati > 0 for 1 < i < j < n, and a,-,- = 0, i = 1, • • • ,n, n
labelled points xx , ■ • • , xn are placed at random on the segment [0, L]; what is the
probability Pin, A, L) that | x{ — xs \ > an for all i and p. Here it may be shown, [4],
that if the matrix A satisfies the triangular condition

au + a,* > a,i , 1 < i, j, k < n,

then

P(n, A, L) = 1/nl X) [max (0, 1 — 1/L a,w„a+d)]",
azO k=1

where G is the symmetric group on n elements, whose members are

/ 1 2 ••• n\
\<t(1)0-(2) ••• <r(n)/

If a,-,- « L for all i and j, then in analogy to (4) and (5) we have

P(n, A, L) = 1 — 2/L 23 aa + 0[max au/L]2.
*<J

3. We take up now the scattering problem mentioned at the end of section 1. For
simplicity it will be assumed throughout that X = 2x. If the assumption concerning
the closest approach of two scatterers were absent, then by the standard methods,
for instance, by that in [5], we could have shown that

W,„(X, Y) = (2t)~2 [ f exp [~i(PlX + P2Y)]An(Pl , p2) dPi dp, , (6)
J — CO J —CO

where
aL nh / n n \

An(pi , p2) = 1/Ln / • • • / exp i( Pi 23 cos xk + p2 X sin «*) dxi ''' dx„
Jo Jo \ 1 1 '

(7)

We notice that the region of integration in (7) is the hypercube H of section 2. Recalling
that the sample space of the forbidden configurations (Xi, • • ■ , xn), with I a;,- — x,- \ < a
for some i and j, is the set F = u.<, Fa , and the sample space of the allowed con-
figurations is therefore the residual set R = H — F of the hypercube H, we have the
following: under the assumption that no two x's are closer than a, and otherwise the
x's are at random, the probability Wn(X, Y) is still given by (6) but in the integral
for A^Pi, p2) the region of integration is R, not II. That is,

Wn(X, Y) = (2x)-2 f [ exp [—t(piX + P2Y)]Bn(Pl , p2) dPl dp2 , (8)
J —CO J —00

where

Bn(pi , p2) = (vol R)'1 /-/ exp ^ cos xk + p2 X s'n dxi • ■ • dxn . (9)
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Most of our work from now on will be concerned with estimating Bn(p1 , p2). We shall
assume that a is small, and we shall derive a formula of the type

Bn{px , P2) = -Bo(pi , P2) + «-Bi(pi , p2) + 0(a2); (10)

B0 and Bi will be found, and since the final aim is finding the Fourier transform (8)
of B„ , it will be necessary to examine the dependence of the 0(a2) term in (10) on pL
and p2 . This will complicate somewhat the derivation of the succeeding estimates.

4. Let Si , • ■ ■ , SN be a finite number of sets in the Euclidean space E", let S be
their union, and let / be an integrable function defined on S. Then

[ fdV = £ [ fdV- Z [ l9<,dV, (11)
Js » =1 J St 1<»'< j <AT J SiHSj

where gu is a function defined on S{ Sf and 0 < g,< 1, for each i and j. To prove
(11), we consider the set of 2N atoms, corresponding to the sets S{ . These atoms are
defined as follows: let S{ — S — S{ , and let K(S,) stand for either one of the sets Si
and Si ; then the 2V atoms are all the 2 v sets of the form

if(^) r\ k(s2) n • • • n k(sn).

An atom which is not the empty set, is said to be of order k if it lies in exactly k different
sets Si . Define now gu as follows: gu(x) = 2/k if x e A and A is an atom of order k.

Since such an atom lies in exactly sets S{ C\ Sj the corresponding contribution

in (11) from the first sum is k fA f dV, and the contribution from the second sum is
(k — 1) Ja / dV; since S is the union of all the 2N atoms, the equation (11) balances.

It may be mentioned that a formula more general than (11) is

f fdV= E f fdV- Z [ fdV + £ [ fdV 
j s i = l JSi l<ix<ia<N J Siif-\Si2 l<ti<t3<»3<JV j S i if^s t »r\S i 3

+ (-i)r+1 E f fg^-irdV,
i<ii<ia<-"<ir<N Jsurf-nsii

where g = g^i,...^ is defined on the set Sit H Sit • • ■ r\ Sir , and 0 < g < 1. This
formula can be proved in the same way as (11); it would be the proper starting point if,
instead of deriving (10), we were interested in deriving the superior approximation

B„(p 1 , p2) = B0(p1 , p2) + aB^pi , p2) + • • • + arBr(pi , P2) + 0(a+1).

We proceed to apply (11) in order to derive (10). Recall that

R = H — F = H— VJ Fij ,
1 < t < j < n

and let T stand for the integrand in (9). Then

[ T dV = f TdV- [ TdV; (12)
J R J H J F

we now apply (11) with N = (2) and with the sets Fa as the Si's. We obtain then

f TdV = Z [ TdV - Z f Tgiir. dV, (13)
Jf !<»<;<» J Fij JFijC^Fr,
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where the second summation is over all the distinct

= (n - 2n3 - n2 + 2n)/8 (14)

pairs (i, j), (r, s) with 1 < i < j < n and 1 < r < s < n.
5. We shall derive in this section an estimate of the first sum in (13). By the defini-

tion of Fa as a product set, and by the multiplicative property of the integrand T,
we have

/% n i / n 2 n—2 \

J T dV = j • • • j exp X) cos ̂  + P2 Z sin x*j dxx • • •

• £ J" exp t[p](cos x + cos y) + p2(sin x + sin ?/)] dx dy J, (15)

where Ba is the hexagon in the xy-plane, with the vertices (0, 0), (0, a), (a, 0), (L, L)'
(L — a, L), (L, L — a). By adding onto Bu the two triangles with the vertices (0, 0)
(a, 0), (0, —a) and (L, L), (L — a, L), (L, L + a) we complete the hexagon to the
parallelogram given by a: — a < y < x + a, 0 < x < L. Therefore, denoting by J
the second integral on the right hand side in (15), we have

n L nX + a

J = / I exp i[pi(cos x + cos y) + p2(sin x + sin y)] dy dx + cxa (16)
«/0 J x—a

where | Cj | < 1. We observe that
nX + a

/ Ky) dy = 2aj(x) + c2Ma,
J x—a

where | c2 | < 1 and M = max | f'(y) |. Applying this to (16), with

f(y) = exp i(Pl cos y + p2 sin y),

we have | /' (y) | < p, where
o = (p? + pDu2, (17)

and therefore

J = 1 [2a exp 2i(pi cos x + p2 sin x) + c2pa2 exp i(pi cos x + p2 sin ^)] dx + cxa .
Jo

It was assumed that L is an integral multiple of the wave-length X = 2ir, therefore

J = 2aLJ0(2p) -j- c2pa LJ0{p) "t" Cia2, (18)

where J0(x) is the Bessel function of the first kind and order 0, and p is given by (17).
The (n — 2)-fold integral in (15) is likewise expressed in terms of the Bessel functions:

/»i / n—2 n — 2 \

J ■■ ■ J exp z^pj *52 cos xk + p2 ̂  sin xkJ dXi = [LJ0(p)]"~"2-

This, together with (18), gives an estimate on the first sum in (13):

z f T dV = (g)
1 <»'<?'<n J Fa \4/

'L TdV = (2 )aLn~2lJo(p)T~2[2LJo(.2P) + c2apLJ0(p) + da]. (19)
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6. We consider next the terms of the second sum in (13). These are of two kinds:
(a) iVx terms coming from the pairs Fu , Fra with all four indices distinct, and (b) N2
terms coming from the pairs F, Frs where two indices coincide, that is, i = r or j = s
or j = r.

For a term K of the first kind we have, by the mean value theorem for integrals,

K = f Tgiir. dV = c3 [ T
JFijnFr, JFijr\Fr.

dV

where | c3 | < 1, since 0 < gijrs < 1. Now, by the definition of the sets Fu and by the
multiplicative property of the integrand T, we have

K = c3[LJ0(p)r4J2,

with J given by (18). Therefore

K = c3a2\LJ 0(p)]"~4[2L/ 0(2p) + c2paLJ0(p) + Cla]2. (20)

A typical term of the second kind is

f Tgiti. dV;
JFijnFis

here by a method similar to that one used in section 5, we derive the estimate

f TgiU, dV = Ci[LJ0(p)]n~3[a(p + a)]2, (21)
J FanFi,

where c4 is a constant.
Putting together the results of this section and the previous one, in particular, by

(19), (20) and (21), we get from (12)

f TdV = f TdV - [ TdV = [LJ0(P)T - (")a[LJ0(p)r2\2LJ0(2p)
J R J H J F \4f ^22)

+ c2apLJ0(p) + Cja] + NiC3a2[LJ0(p)]n i[2LJ0(2p) + c2apLJ0(p) + Cid]2

Actually, we do not need every term explicitly, and we write (22) as

[ TdV = [LJ0(p)T - n(n - l)aLn~1Jn0-\p)Jo{2p) + ca2E, (23)
J R

where c is a constant, and the error term E is a finite sum of expressions like

p\JTk{p)Jl(2p), 0 < j < 2, 0 < k < 4, 0 < v < 2-
Hence (9) becomes

Bn(p! , P2) = [L - (n - l)a/L]~"[L"Jo(p) - n{n - \)aLn-lJl~\p)J0{2p) + ca2E],

and expanding the negative power, we get

Bn(pi , P2) = J"0(p) + »(» - 1 )(a/L)J"0-2(p)[J20(p) - J0(2p)] + c'(a/L)2E', (24)

where c' is a constant and E' is of the same type as E. This is the expression of the type
(10) that we have been looking for.

7. In taking the inverse Fourier transform (8) of B,l(pl , p2) we observe that the
contribution from the term c'(a/L)2E' is 0(a2/L2), since for large p we have J"(p) =
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0(p~m/2), and since each term in E' involves a sufficiently high power of J0(p) to com-
pensate for the presence of the powers of p (a tacit assumption is made here that n is
sufficiently large). Hence by (8)

Wn(X, Y) = (2?r)-2 .exp [~i(PlX + p2Y)]JZ(p) dPl dp2 + (2*Y\a/L)n{n - 1)

• J" exp [~i(PlX + p2Y)]Jn0-\p)[J20(p) - J0(2p)] dPl dP2 + 0{a2/L2). (25)

We introduce the polar coordinates:.

X = R cos (p, Y = R sin <p, pi = p cos a, p2 = p sin a,

and (25) becomes

WJfi) = WJfi cos <p, R sin <p) = {2-k)~2
«co r

• / / exp [—ipR cos (<p — a)]Jo(p)p da dp + (27r)~2(a/L)n(n — 1)
Jo Jo

■ [ r exp [—ipR cos (<P - a)]Jl-\p)[Jl{p) - ,/0(2p)]p rfa dp + 0(a2/L2);
•/o 0

the integration over a can be carried out, and we get finally

Wn{JR) = (2tt)—1 [ J0(pR)Jno(p)p dp + n(ra - l)(a/2wL)
Jo (26)

• r Jo(pR)Jo'2(p)[Jo(p) - /o(2p)]p rfp + 0(a2/L2).
«/0

For a = 0 this reduces, as it should, to the classical solution of the plane isotropic random
walk, obtained by Kluyver, [6].

8. In conclusion, we shall formulate a general problem, which includes as special
cases all those considered here and many more besides, for instance, the case of the so
called hard-sphere gas model in the statistical mechanics. Let n and N be two positive
integers and let B and P be two sets in the Euclidean space E". P is assumed to have a
center of symmetry x, and it may be thought of as being much smaller than B. AT points
Xi , • • • , xN are taken at random in B, and P(Xi) is the set obtained by translating P so
that the center of symmetry is at x{ . The sample space of the points xx , • • • , xN , or
of the iV-tuple (xl , • • • , xN), is the iV-fokl Cartesian product {{xi , ■ • ■ , xN): xt t B,
i = 1, • • • , Ar}. We call an iV-tuple a forbidden configuration if x{ e P{Xj) for some two
members a;,, xs of the A'-tuple, otherwise it is called an allowed configuration. The sample
space A of all allowed configurations is then

A = {(xt , • • - , xw):x< (£ P(Xj), 1 < i < j < N}.

Let f(x) be an integrable function defined over B; our pro blem is that of evaluating
the integral

/ = / •" / f(xj) • • • j(xN) dxi ■■■ dxN ,

where dxt is the volume element in E". The problem may be further extended by taking
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integrands of the type F(xl , ■ • • , xN), and also by letting the points xl , • • • , xN be
distributed in B according to some probability law. In the latter case the integral I
depends on that law, and we may ask, for instance, for its expected value.

While a general solution of this problem does not appear feasible, a possible approach
might be to introduce a 'basic ratio', such as, for instance, the ratio of the diameters,
widths or volumes, of the sets P and B, and to find the coefficients in the expansion
of I in the powers of that ratio.
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