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Summary. Lately it has become fashionable to develop the theory of electrical
networks by starting first with a detailed, scholarly exposition of the theory of graphs
(containing both nodes and branches), as given in textbooks on algebraic topology.
However, when the graph analysis finally gets down to the study of actual electrically
excited networks, it will invariably be found that all traces of the concepts of nodes
and their associated "incidence-matrices" have disappeared from the final e = zi and
other equations of state that are to be solved. In their place only the branches and
the associated "connection-matrices" have been put to use, all still wrapped up however
in an ill-fitting graph terminology. Of course such legerdemain had to be resorted to,
since graph theorists happened to pick the wrong topological model for an electrical
network. A graph possesses enough structure to propagate an electromagnetic wave
and not an electrical current.

This paper points out that the proper stage of an electrically excited e, i, z system
is not a graph, nor a planar polyhedron, but a 1-network,—a configuration that contains
branches only and no nodes, or planes. The current-law of Kirchhoff prohibits the
presence of nodes; while the voltage-law of Kirchhoff prohibits the presence of planes.
Hence only a pure branch-network (a 1-network) can automatically satisfy both laws
of Kirchhoff, provided the branches are properly organized. Unfortunately texts on
algebraic topology never deal systematically with the theory of 1-networks (or of single
p-networks), since their interest is not the theory of electricity. Topologists always
start out with the theory of the more general graphs, or of polyhedra; hence the confusion
of electrical engineers.

Over two decades ago the author, in his book "Tensor Analysis of Networks",
developed a branch theory of electrical networks. The latter also were endowed with
variable connectedness ("tearing and interconnecting"), in order to allow all possible
types of network manipulations and operations. The central backbone of the "orthogonal"
theory is a square, nonsingular connection tensor C, and its inverse A. Their four rec-
tangular subdivisions C0, Cc and AA", orthogonal to each other, dictate the existence
of four extreme types of switching conditions in any electrical network. It is one or
more of these four rectangular matrices that are actually being used today by graph
theorists in their final equations, but denoted by different symbols and misnamed by
them "incidence matrices", or "reduced" incidence matrices. The latter, however, are
radically different topological concepts, that really belong to a graph and never to a
1-network. Hence the correct branch-network finally used (after introducing and then
ignoring the nodes), is also misnamed a graph.

Since a 0-network, as well as each higher-dimensional p-network, also possesses a
square, nonsingular connection tensor C, it is possible to pass an electromagnetic wave—
but not an electric current—across a combination of two or more p-networks, called
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a polyhedron. (Such animated polyhedra can be used for modelling complex non-electrical
problems that have a large number of independent variables.) This paper develops
the connection-matrices and incidence-matrices associated with a graph, as well as
with a planar polyhedron. The paper also shows, with the aid of signal-flow diagrams,
the relations of the two types of matrices (or rather tensors) to each other, to the laws
of Kirchhoff, and to Stokes' Theorem. Such a treatment unmistakably pin-points the
electrical 1-network within its customarily camouflaged polyhedral environment.

Unexcited networks as polyhedra. To avoid any misunderstanding, it should be
strongly emphasized that all statements made in this paper assume that the network
possesses impedance operators z and is excited by electrical currents (or by electro-
magnetic waves). The paper does not apply to unexcited networks (unless otherwise
stated), nor to impedanceless switching circuits. Also the statements do not apply to
networks excited by nonelectrical quantities.

That is, before its excitation any electrical network may be looked upon as a poly-
hedron: namely as a collection of O-simplexes (nodes), 1-simplexes (branches), 2-sim-
plexes (triangular planes), 3-simplexes (tetrahedra) etc., all interconnected into one
structure. It is the argument of the paper that after excitation by conventional voltages
and currents, all simplexes (all nodes, planes, etc.) disappear from view and only the
branches or 1-simplexes are recognized by the electrical e, i, z system.

The topological problem. The topological problem confronted by the electrical
engineer is as follows:

1) Given a set of wires with electrical currents and voltages superimposed. Since
all laws of electricity are assumed to be known, the superimposed "algebraic structure"
is thereby defined. It deals with the algebra associated with the three electrical concepts
e, i and z.

2) Establish by trial and error an underlying topological structure, which can auto-
matically adjust itself to all the algebraic peculiarities of the superimposed electrical
e, i, z system. There is no a priori reason why one of the possible structures should fit
the algebra rather than some other.

Three approaches. Graph theorists appropriate, as the final goal of their search,
the very first topological structure which is being encountered whenever an elementary
textbook on algebraic topology (such as Ref. 6) is opened. That structure happens
to be the "graph". Irrespective of the subtle nature of the superimposed electricity,
graph-theorists force the electric current, by all types of contortions, to fill up the entire
available graph-structure, as if the latter were a Procrustean bed.

To escape the numerous contradictions encountered in graph theory, many electrical
engineers enlarge the graph with planes (2-simplexes). The resultant planar polyhedron,
however, introduces even more contradictions, without removing the existing ones.

The present paper summarizes a painstaking and long search for a suitable under-
lying topological structure that can adjust itself automatically to all the idiosyncracies
of the superimposed electrical current. Since the algebraic structure of electricity flowing
in networks is rather analogous to the algebra of "exterior" differential forms (employing
skew-symmetric tensors of various ranks) discussed in more advanced and more modern
texts on differential topology (see Ref. 7), the resultant topological model of an elec-
trical network is also of a more advanced and more sophisticated nature. Instead of
being a rigid graph, or a rigid planar polyhedron, the electrical-network model presented
is a flexible "orthogonal" 1-network that contains branches (1-simplexes) only, and
that can be freely torn and interconnected in all possible ways.
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It is disconcerting that no textbook on algebraic topology deals in detail with struc-
tures that contain only one type of p-simplexes. The reason must be that these texts
do not deal with the theory of electricity, and hence with the highly specialized topo-
logical structures needed by electricity. Apparently the electrical engineer must do
his own specialized research on algebraic topology to suit his own peculiar needs.

Graphs as carriers of masses. In order to compare the 1-network model to be
presented with the graph model, a short outline of the latter is given first.

A graph (Fig. 2a) is a structure consisting of oriented, interconnected O-simplexes
(vertices) and 1-simplexes (branches) (Fig. la and lb). It is possible to put arbitrary
weights upon each branch by assigning a different number to each branch. It is also
possible to put arbitrary weights upon each node by assigning a different number to
each node. For instance, three of the node-weights may be zero and the fourth may
have arbitrary value, thus representing a single Dirac function upon the graph.

It is emphasized that in a graph no relations exist between the weights put upon the
branches and the weights put upon the nodes. That is, a weighted graph—as a unit—-
is not aware of the existence of such physical laws as Kirchhoff's.

Graphs as frustrated electrical networks. Instead of the masses, let now an electrical
current and voltage be impressed on the graph, as so many writers on the subject claim
to do. Immediately a host of contradictions arise:

1) A current can not be placed on one node only, as a weight can be. The current
would only accumulate and eventually explode.

2) If two currents are placed on two nodes, the two currents must be equal and also
must have opposite signs. That is not true with the weights.

3) The summation of masses placed upon one node and its surrounding branches
may be any number. On the other hand, the summation of all currents entering a node
from the outside and its surrounding branches must be zero.

4) The summation of masses placed upon all the nodes of a graph may be any number
(usually it is normalized to one), while the summation of currents entering simulta-
neously all nodes (the entire network) must be zero.

5) If a series generator is placed within a branch, the network is severed. The number
of nodes has thereby increased by one (but not the number of branches) and the graph has
been radically changed into a different graph. However, in a graph the number of nodes,
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(BRANCH NETWORK)

Fig. 1. Three p-networks.
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a) GRAPH b) PLANAR POLYHEDRON

Fig. 2. Two false polyhedral models of electrical networks.

as well as the number of branches, must remain invariant under any operation or trans-
formation.

6) Any open-circuiting or short-circuiting operation is prohibited, since the number
of nodes increases or decreases respectively.

No matter what the electrical engineer attempts to do with a graph, he is violating
some basic property of graphs, or of electricity, or of both.

Three types of 1-networks. In any electrically excited network the simultaneous
coexistence of three different types of branch-networks (or 1-networks) are assumed,
each of which is, in general, differently interconnected. In particular:

1) An abstract network, whose branches form the geometrical "reference frame".
2) A material network, whose branches possess an impedance operator z.
3) An electrical network, whose branches are intangible, but physical filaments.
The "abstract" 1-network. A set of abstract branches are characterized by a set

of unit vectors ba ,ba and a square, nonsingular connection matrix C". whose inverse
is A"' . They describe the manner of interconnection (or rather configuration) of branches.
There are as many rows and columns in C and A, as there are branches. Both matrices
contain in general only +1,-1 and 0 elements. (There exist also a set of unit matrices.)

Two types of independent sets of columns exist in C that enumerate the formation
by the branches of two types of "chains" or "paths":

1) Apparently "open" chains (or "open-paths") described by a rectangular C0 .
2) Apparently "closed" chains (or "closed-paths") described by a second rec-

tangular Cc .
The direct sum of C0 and Cc is the square C. The inverse matrix A = Cj1 also splits

into A0 and A". The manner of selection of the two types of paths depends upon the
problem at hand. For Fig. lb a particular independent set of paths is

Oi O2 O3 Ci C2 C3

1 1bl 111

b
£(<i> _ b3

b4

b*
b6

1
1

-1

-1

1 -1

1 1
-1J

°<1) C(i)

= S(i)[CoU C*1'] (la)
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The inverse connection matrix and its subdivisions are
2 3 1 2 30 0 c c c

^4.(1) —

1

1

1
-1 1

-1 1

b6 L -1 1

-l

-l

-l.

o(1) c(1)

= sw[A°w A'm] (lb)

Actually the abstract branches are isolated from each other, since there is nothing
to indicate that they are interconnected. These matrices may assume, of course, special
forms by special selection of the open and closed paths.

Orthogonality of abstract networks. Since A is the inverse of Ct, it follows that
C,A = 1 or, splitting C and A into their two rectangular components:

A0 =1 CotAc = 0

CctA° = 0 CctAe = 1

Thus the rectangular matrices Cc , A0, as well as C0 , A" are orthogonal to each
other. These relations originated the designation "orthogonal network", to represent
a general network in which the open-paths and closed-paths are orthogonal to each other

The "electrical" 1-network. Imitating the flow of fluid in a region, two types
of permanently connected current filaments ("blue" and "red" currents) are assumed
to exist in any network:

1) "Solenoidal" currents, that flow in closed paths. They are denoted by lower
case letters i.

2) "Lamellar" currents, that flow in open paths. They are denoted by capital letters I.
In the presence of these two types of flow-patterns, no current can accumulate at

any node or within the network, since whatever current enters a node, the same current
must depart from it. (A solenoidal current neither enters a network, nor departs from it.)
Hence Kirchhoff's current law (^ 1 = 0) is automatically satisfied at each node and in
the entire network, without explicitly stating so.

The voltages are also called "solenoidal" e and "lamellar" E, but their physical
representation is less visual.

Since voltages have radically different properties, physical and geometrical repre-
sentations, or laws of transformation from currents, the voltages are "covariant" vectors
ea , E„ while the currents are "contravariant" vectors i", Ia.

The "material" 1-network. The material network (with conductances <re) is
characterized by a set of "impedance" and "admittance" matrices za$ and ya&. Their
component elements, (say Z, + Z2 + Z3), describe, unequivocally, which material
branches are interconnected in series or in shunt.

It is emphasized that the material and electrical networks are in general differently
interconnected. That is, an "open" current may flow in a "closed" material path and
vice versa.

Absence of connectedness. Moreover, during the analysis or during a network
operation, a continuous "switching" action takes place in the material network. As
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the currents and voltages become zero, some open-circuits become short-circuited,
and some short-circuits become open-circuited. That is, the connectedness of the material
network depends on the nature of the superimposed electrical signals, just as in any neural
net (artificial or natural).

It should be mentioned that changes occur also in the electrical networks. Here
an open current or voltage may be replaced by a closed current or voltage, and vice versa.

Four extreme interconnections. The existence of the four types of rectangular
connection tensors C0 , Cc , A0, A° indicates the existence of the following four types of
extreme operating (or switching) conditions in any branch-network (Fig. 3).

CLOSED-MESHES EXCITED
OPEN-MESHES OPEN

a) CLOSED-MESH NETWORK

CLOSED-MESHES CLOSED
OPEN-MESHES EXCITED

c) OPEN-MESH NETWORK

CLOSED-MESHES EXCITED
OPEN-MESHES CLOSED

b) ALL-MESH NETWORK

CLOSED-MESHES OPEN
OPEN-MESHES EXCITED

d) ALL-OPEN NETWORK

Fig. 3. Four extreme interconnections of any branch-network.

1) The closed paths are excited and the open paths are left open ("mesh" networks).
They are constructed with Cc .

2) The closed paths are excited and the open paths are short-circuited ("all-mesh"
networks). They are constructed with A".

3) The open paths are excited and the closed paths are left closed ("junction "or
"open-path" networks). They are constructed with A0.

4) The open paths are excited and the closed paths are open-circuited ("all open"
networks). They are constructed with C0 ■

In these switching operations the number of nodes in general does not remain invariant,
but the number of branches always does. In a graph the requirement of "invariance of
the number of nodes" prevents all types of switching operations, except the open-path
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type. Even in forming a mesh network each generator tears the network and increases
the number of nodes.

Influence of "environment". In algebraic topology with every n-dimensional
polyhedron there is associated a "dual" polyhedron, whose n — p simplexes are at right
angles in space to the w-simplexes of the original (primal) polyhedron. All analysis of
surfaces imbedded in multiply-connected spaces imply the use of both polyhedra.
Similarly it so happens that it is necessary to employ both primal and dual polyhedra
(a "two-phase" system) to propagate a magneto-hydrodynamic wave across them.

Therefore an isolated 1-network with four electrical parameters e, i, E, I is not
yet a "complete" network that could serve as a prototype for a polyhedral network.
It is necessary to consider the environment of the 1-network that can induce currents
and voltages in the network under consideration. Two-phase electrical power-networks
and rotating electrical machines are models of such an environment. The topological organiza-
tion of "complete" dynamic 1-networks (immersed into a two-dimensional magnetic
field) has been undertaken by the author in his many works on non-Riemannian dy-
namics (Ref. 3). The coupled 1-networks are also tearable and orthogonal. However,
the organization of single-phase static 1-networks (with which the present paper deals)
is only a necessary preliminary step to the organization of two-phase dynamic 1-net-
works. It is the latter that form the real foundation of polyhedral networks excited with
electromagnetic waves.

The external electrical 1-network also possesses the four parameters e*, i*, E*, I*.
However when these appear as induced parameters in the original network, they behave
in a dual manner. In particular:

1) In the closed paths of e and i appear the open parameters E* and I*.
2) In the open paths of E and I appear the closed parameters e* and i*.
Thus in any electrical 1-network (or p-network) eigh types of electrical parameters

co-exist simultaneously, namely four covariant vectors e, e*, E, E* and four contra-
variant vectors i, ?'*, I, I*. (The existence of mechanical, thermodynamical and other
types of parameters in 1-networks can also be assumed. Their discussion, however, is
left for future considerations.)

Eight electromagnetic parameters. Although most electrically excited 1-networks
contain the e, i, z = 1 /a, parameters, there arise occasionally dielectric 1-networks
with D, E, e, and magnetic 1-networks with B, H, n parameters. The theoretical existence
of magnetic conduction-networks with Em , Im , <rm also must be assumed. When these
four types 1-networks are coupled, the eight electrical parameters may be reinterpreted
as forming the parameters of an electromagnetic wave. In particular:

i = electrostatic flux d
I* = electric charges pe*
I = electric current J"
i* = magnetic intensity h*

e = electric intensity e
E* = magnetic current J*
E = magnetic charge pm
e* = magnetic flux b*

(The dots over b, d, pe, pm are left out because of printing exigencies.)
It is interesting that the closed (solenoidal) parameters represent wave quantities

b, h, d, e, while the open (lamellar) parameters represent particles p°, pm, J', Jm . Such
a set of four coupled 1-networks has already been used as the three-dimensional 1-
network model (not polyhedral model) of the field equations of Maxwell (Ref. 5). This
three-dimensional model selves as the prototype for each complete wave—within the
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hierarchy of electromagnetic waves—that propagates across an n-dimensional poly-
hedron.

It should be mentioned that in the polyhedral model the above eight parameters
of an electromagnetic wave appear, not in their eight vectorial forms shown, but in
their four tensorial forms F, H"11, sa and s". It is again found that the three concepts
of multi-dimensional networks, electricity and tensors are all intertwined into one
consistent structure, just as they are in the case of conventional electrical networks.

Signal-flow diagram. All tensorial formulas of a 1-network may be codified in
the form of an algebraic diagram, or signal-flow graph, (a true "graph", Fig. 4) in which
each arrow represents a tensor instead of a scalar. More detailed signal-flow diagrams
may be found in Ref. 2.

Generalization to p-networks. Every concept, relation, switching operation,
algebraic diagram, formula, etc, developed for 1-networks, are valid also for any other

 m t « ■«  2-NETWORK

e' E'

Fig. 4. Signal-flow diagram of a branch-network.
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Fig. 5. Signal-flow diagram of a polyhedron.

p-networks, namely for 0-networks, 2-networks, etc. The same nomenclature is employed
for each p-network, but with a dimension-index p attached. It is possible to assume
that each p-network can be excited separately by an electrical e, i, z system as long
as they are not interconnected.

To prepare the ground for the interconnection of the various p-networks into a
polyhedron, the square connection matrices (and their two rectangular subdivisions)
will be given for a 0-network and for a 2-network. They are the two neighbors of the
electrical 1-network and serve as examples for the above "generalization postulate".

Connection matrices of a 0-network. Let the 0-network of Fig. la with 4 points
be considered. Its "closed" paths are formed by any two vertices ("node-pairs"). Al-
together there are three such closed paths. Its single "open" path consists of the col-
lection of all vertices. Thus the square nonsingular connection-matrix C"" of a 0-network
(and its two rectangular subdivisions) are

Op Ca Cj

n

Qt,o) __

n3

nt

1

1

1

L 1

1
-1 -1 -1

1

1J

0(0) C(0)

3C0)[cr c<o>] (3)

The three closed-paths of the 0-network were assumed as the boundary points of
the three open-paths of the 1-network. It may come as a surprise to many graph theo-
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rists that a node-pair is a "closed" concept (analogous to a "closed-mesh") and it is
not an "open" concept (like the "open 1-path" is).

The inverse connection matrix and its two subdivisions are

op c" c6 c"

n

A-<M0) —

n

3 -1 -1
-1 -1 -1

-1 3 -1

-1 -1 3.

o<0) c<0)

1 - <!<0), „4 — & L-^to)[A?„ A\n] (4)

Since C^A^-, = 1, the orthogonal relations shown in Eq. 2 are satisfied in a 0-
network also.

Connection matrices of a 2-network. Let the 2-network of Fig. lc with 4 planes
be considered. (The fourth plane is the sum of the visible 3 planes.) The "open paths"
are formed by those planes that cover the "closed paths" of the 1-network of Fig. 2b.
The square connection matrix (and its two rectangular subdivisions) are

Pi
£,(2) _ Pz

P*

Pi

0A O b O c Cp

-1

1

1

1J

)(2) C(2)

7(2)= «<2,[Cr Cl2) ] (la)

The inverse connection matrix and its rectangular subdivisions are

P

A -p2^i(2) —

4
P

Po o o c

1

1

1

_1 -1 -1 lj

o<2) c(2)

= s(2,[A?2) A'm] (5b)

Since C,<2)>4 (2) = 1, the relations in Eq. (2) are satisfied and the 2-network is also
an "orthogonal" network.

Connection matrices and Kirchhoff's laws. In each p-network the solenoidal and
lamellar currents and voltages separately satisfy Kirchhoff's laws (for p-currents and
p-voltages) in consequence of the properties of the four rectangular connection matrices
C0, Cc and A0, A" of each p-network.

From the algebraic diagram of Fig. 4, four sets of Kirchhoff's laws are now derived
by inspection. The first two sets relate to the original four vectors E, i and e, I respectively

C<?Em = 0
CS?eM = 0

A°MtiM = 0 (6)
r(p)   n

(p)MA'miIw = 0

A second two sets relate to the environmental vectors. (See Ref. 2, Part XXIX
Eqs. 18 and 19.)
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Interconnected polyhedron. A sequence of n + 1 different p-networks, consisting
of a 0-network, 1-network, 2-network etc, to n-network, can be connected into an n-
dimensional polyhedron. The algebraic or signal-flow diagram of the resultant structure
(Fig. 5) consists of the signal-flow diagram of each component p-network (given in
Fig. 4) laid side-by-side. Because of the interconnections additional arrows appear
between the dots, some of which are shown on Fig. 5. The most important of these
new tensors is the so-called "incidence matrix" M^+1 (long horizontal arrows) that shows
how two neighboring sets of p-simplexes and p + 1 simplexes are interconnected.

Polyhedra excited with electromagnetic waves can be used for multidimensional
curve-fitting (Ref. 13), partial differential equations, Fourier Transform, and advanced
information-theoretical problems, where a large number of useful informations need
to be derived from a comparatively few given data.

Incidence matrix of a graph. In the signal-flow diagram of Fig. 5 the rectangular
incidence matrix M° is shown to relate the points of the 0-network with the branches
of the 1-network. The diagram also shows that M\ may be established as the product of
two rectangular connection matrices C[a) and A1^, one belonging to the 0-network, the other
to the 1-network. That is (Fig. 2a)

Ci0,i;A?1)l = CrA°il)t = Mil] (7a)

ca cb cc b1 b2 b3 64 b5 b6
bl b2 b* b* b5 66

Ml

n2

n3

Hi

1
-1 -1 -1

1

1.

-1 -1

1 1 -1

1 1 1

n i

n2

n3

n4

1 -1-1

1 -1 -1

1 1 -1

1 1 1J

(7b)

In topology the incidence matrix (or rather its abstract equivalent) is denoted by
d and 5. Customarily M° is established by inspection of the nodes and branches. The
columns of M° show that each branch extends between two nodes. It is very important
to note that a connection matrix can not be derived from an incidence matrix, in spite of
the sleight-of-hand manipulations of graph theorists. On the other hand, an incidence
matrix can be found as the product of two rectangular connection matrices.

Incidence matrix of a planar polyhedron. If a planar polyhedron is defined as a
collection of nodes, branches and planes, then the second of its incidence matrices is
found by (Fig. 2b)

C«1}i;A<.„ = = Mil] (8a)
c1 c2 c3 p1 p2 p3 p1 pl p2 p3 p4

1 at , ,~\ b2

b3

1 _1 ocL 1 -lJ bi
1 b5

-lJ 6, L -1 1J

bi
b3

b<
b*

b\

-1
1

-1

1 -1

-1 1

-1 -1

1 -1

1 1

(8b)
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The columns of M\ show that each plane extends between three branches. In general
a planar polyhedron is completely represented by the three nonsingular connection
matrices CW), Cw and C<2'.

Incidence matrices and Stokes' Theorem. When two different-dimensional spaces,
or networks of spaces, are interconnected, all superimposed scalar, vector and tensor
quantities must satisfy Stokes' Theorem at the boundaries. For instance, if c is a
p + 1 volume and dc is its boundary p-surface, then

f $ = f d$ (9a)
«J dc J c

That is, the surface integral of a tensor $ is equal to the volume integral of the "exterior"
differential (d(P) of the tensor.

Stokes' Theorem does not apply to a single p-network, hence it can not apply to an electri-
cal network. When two different-dimensional networks are interconnected, an electro
magnetic wave (or rather a magnetohydrodynamic wave) must be passed across them.
The electromagnetic wave vectors do satisfy Stokes' Theorem.

The incidence matrices, since they relate two different-dimensional electromagnetic
quantities, automatically satisfy Stokes' theorem for both solenoidal and lamellar vectors,
as well as for both covariant and contravariant vectors. E.g. from Fig. 5

Ep+i = Bp

^p+i (J\ip+i) t ep
H" = ^ (9b)
d" = Ml+1hr+1

Since no graph-theorist or polyhedral-theorist of electrical networks ever mentions
Stokes' theorem, although they claim to use incidence matrices, this silence also throws
doubt upon the correctness of their models. Confusing incidence matrices with connection
matrices is identical to confusing Stokes' theorem with Kirchhoff's laws.

Transforming graphs into instruments of torture. It can be stated that no electrical
network problem exists which can not be analyzed and solved by the use of branches
only. Every attempt to drag in nodes or planes must lead to disaster or to a forced
(but camouflaged) switch-back to the branches somewhere during the reasoning process
Expressed in another manner, the final equations of state of any electrical network
as derived by graph-theorists, can always be arrived-at in a more logical manner, an
in considerably fewer steps, if the analysis starts outright with the presence of branches
only, and if the concept of "node" is never mentioned. Moreover, the engineer would
not have tied himself meanwhile into knots, and would not have been reduced to intel-
lectual impotency by the many restrictions and "verboten" signs scattered along the
pathways of his reasoning by such graph-theoretical concepts as the "invariance of
the number of nodes." On the other hand, the 1-network restriction of "invariance of
the number of branches" would still enable the engineer to perform all switching, tearing,
and other operations and transformations customarily performed at all times on all
varieties of electrical networks.

Tensors in the large. By calling a tensor a "matrix", the electrical engineer thinks
that he has removed thereby the crucial difficulties of his analysis. But he has merely
stuck his head under the sand! He has ignored the fact that each scalar number he
deals with is actually a p-volume integral of a differential p-form, whose definition
implies tensors. Moreover he has deliberately removed the only mechanism he had
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available to differentiate between the numerous types of reference frames he is forced
to deal with.

One future course for the development of electrical engineering suggests the extension
of one-dimensional networks to multi-dimensional networks: and the generalization of
conventional currents to electromagnetic and magnetohydrodynamic waves (to both
ray-optics and wave-optics). An obvious possibility of physically realizing such structures
lies in the use of crystals, since the oscillating atoms in a polyatomic molecule, as well
as their associated dipole waves and electromagnetic waves, are surprisingly compre-
hensive physical analogues of the polyhedral waves discussed here. (The atoms within
a molecule define the vertices of a polyhedron.) To facilitate these structural researches
in solid-state physics, the electrical engineer will definitely need the theory of "tensors
in the large" as developed during the last three decades by Cartan, DeRham, Hodge,
Whitney, Eilenberg, Steenrod, Chern, Lichnerowitz, Kodaira, and a host of other
mathematicians. Only the recently appearing advanced textbooks on differential top-
ology ("fiber bundles", etc.) contain the tensorial and topological foundations upon
which electrical engineers of the future must build their electrified polyhedral structures.

Algebraic Topology—A false alarm for electrical networks. It is important to note
that texts on algebraic topology superimpose upon the underlying structure only such
geometrical concepts which can not serve as analogues for electrical entities. The geo-
metrical analogues of electricity are represented mathematically as "exterior" differential
forms and their p-volume integrals. Only the above mentioned recent textbooks on
differential topology deal with the type of differential forms needed by electrical engineers.
Conventional texts on algebraic topology do not deal with superimposed differential
forms or their integrals.

Moreover, electricity and Maxwell's equations constantly require the appearance
and application also of Stokes' theorem, and the latter does form the central interest
in differential topology. On the other hand, textbooks on algebraic topology never
mention Stokes' theorem. Hence the theorems in the latter texts on superimposed
concepts cannot be forced by any strategy to apply to electrical networks.

The Concepts of "Tearing and Interconnecting". It should be emphasized that
the concept of "tearing and interconnecting" (stating that all p-networks with n p-
simplexes can be transformed into each other) is indispensable to the practical applica-
tions of electrified 1-networks and p-networks. However, the concept—or at least a
systematic treatment of it—is believed to be absent not only in texts on algebraic top-
ology, but also in texts on differential topology. That fact, however, does not make the
invariant procedure of tearing and interconnecting scientifically incorrect. Impulse
functions also appeared first in physics and then only in works on mathematics.

Crystal Computers. With the arrival of multidimensional networks the eventual
construction of "crystal computers" (both analogue and digital) is within the realm of
possibility. Since the dynamically self-sustained dipole and more general waves in
crystals can be used to model polyhedral self-organizing automata, that fact opens up
new horizons for the theoretical and practical solution of large-scale system problems.
It is also probable, that the electromagnetic waves in a crystal approximate much
closer the actual phenomena taking place within a neural network, than do the signals
in a switching circuit. While the possibilities for the utilization of multidimensional
networks are limitless, much organizational and development work still lies ahead.

But topologists can not be expected to do the highly specialized research demanded
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by the vagaries of electricity. Electrical engineers should not thus copy and adapt
blindly everything the algebraic topologists puts down on paper, or tells them in casual
conversations. Rather they should do their own share of the topological research in
their own bailiwicks.

Bibliography
1. G. Kron, Tensor analysis of networks, John Wiley and Sons, New York, (1931)
2. G. Kron, Diakoptics—The piece/wise solution of large-scale systems, a serial of 20 chapters in the

June 7, 1957 to Feb. 13, 1959 issues of the Electrical Journal (London)
3. G. Kron, Non-Riemannian dynamics of rotating electrical machinery, J. of Math, and Physics, 13,

103-194 (1934)
4. G. Kron, Tensor analysis of multi-electrode tube circuits Trans, AIEE, 55, 1220-42 (1936)
5. G. Kron, Equivalent circuits of the field equations of Maxwell-I, Proc. IRE, 32, 289-299 (1944)
6. O. Yeblen, Analysis situs, American Math. Soc. New York, 1931
7. W. V. C. Hodge, The theory and application of harmonic integrals, Cambridge University Press (1952)
8. G. Kron, A generalization, of the calculus of finite differences to nonuniformly spaced variables, Trans.

AIEE 1, Communications and Electronics 77, 539-44 (1958)
9. G. Kron, Basic concepts of multidimensional space filters, Trans. AIEE 1, Communications and

Electronics 78, 554-61 (1959)
10. G. Kron, Self-organizing dynamo-type automata, Matrix and Tensor Quarterly 11, 2 (1960)
11. G. Kron, Power-system type self-organizing automata, to appear in R.A.A.G. Memoirs III of the

Basic Problems in Engineering and Physical Sciences by Means of Geometry (Japan)
12. G. Kron, Tensors for circuits, Dover Publications, Inc. New York (1959)
13. G. Kron, Multidimensional curve-fitting with self-organizing automata. Scheduled to appear in the

Journal of Mathematical Analysis and Applications
14. G. Kron, The misapplication of graph theory to electrical networks, Trans. AIEE 1, Communications

and Electronics, 81 (1962)


