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1. Introduction. We discuss the diffracted field that arises when an incident plane
electromagnetic wave strikes a right angled wedge. One face of the wedge is a perfect
conductor and the other face supports and sustains surface waves. The solution on
which the discussion is based was obtained in [1] by using an elementary technique
developed by the authors. Since this method has been adequately treated in the literature
[2]—[7], most of the calculations are omitted, f However, the structure of the field along
the surface of the wedge at external grazing incidence (60 ± 7r/2 in Fig. 1 below) is
treated in some detail. This is because there are certain difficulties and subtleties asso-
ciated with this special case which do not seem to have been noticed in the literature
and are not discussed in our previous papers. These results are particularly interesting
and significant since special features of the field found in the present simple problem
may reasonably be expected to emerge from a careful study of the more general, but
less detailed, analyses of wedges of arbitrary angle (see Maluzhinets [8] and Williams [9]).
A consequence of this detailed analysis is that the amplitude of the surface wave for
small values of the parameter characterizing the surface differs from that given by
Williams [9] by a factor of 2. Finally, we plot several curves that illustrate the results
obtained. These numerical results are important since they help considerably in the
understanding of the interaction between the electromagnetic field and the characteristic
surface parameter.

The structure of the paper is as follows. Section 2 contains a precise statement of the
problem solved. The results of the analysis, which are exact, are summarized. In Sec. 3
the magnitude of the surface wave is treated for the special cases of small and large
values of the characteristic surface parameter. These two cases correspond physically
to the limits of loosely and tightly bound surface waves, respectively. A brief discussion
of the far field cylindrical wave is given in Sec. 4 and the results are summarized.

We also give a graphical discussion of the field produced by a plane wave incident
along the perfectly conducting face (d0 = 0 in Fig. 1). Figure 5 shows the radiation
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was supported by Air Force Contract No. AF 19(604)5238.

fThe material contained in this paper is a much improved version of an EM-Report by the authors
[1]. It contains a considerable simplification of the results derived in [1], omits the analysis and corrects
an error made in one of the Sections. This error was pointed out at a later date, but not entirely cor-
rected, by Williams [9].
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pattern when the surface reactance Xk of the other face is 0, 1/2, and °°, respectively.
The value 1/2 is a typical value, and the other two values are included for comparison.
In Fig. 6 the ratio of the amplitude of the surface wave to that of the incident plane
wave is shown as a function of the dimensionless surface reactance when the angle of
incidence of the plane wave is zero. In the text we deduce analytically the interesting
fact that there is an optimum value of the surface reactance which gives rise to a max-
imum value of the induced surface wave amplitude. Figure 6 illustrates this result in the
case of 60 = 0.

2. Statement of problem and results. Consider a right angled wedge defined by
the surfaces y = 0, x > 0 and x = 0, y < 0, as shown in Fig. 1. In the angular region
0 < 6 < 37r/2 we assume that we have free space. A plane wave u, , whose magnetic
vector is linearly polarized in the z-direction, is incident upon the wedge. If the angle
of incidence is 60 and the direction of the normal to the plane wave front is as shown
in Fig. 1, then

Uj = Ua exp [—ikr cos (0 — 0O)L (2-1)

where U0 is the magnitude of the incident plane wave and the time dependence e""'
is omitted for convenience. The boundary conditions on the wedge surface are given by

fy = 0, y = 0, x > 0,

  \u = 0, x = 0, y < 0,dx

(2.2)

where u is the 2-component of the magnetic vector. The quantity X is given by

X = icotZ = iue(R — iX), (2.3)
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where e is the permittivity of free space, to is the angular frequency and Z, R and X are
the impedance, resistance and reactance of the surface, respectively. It is well known
that for homogeneous media of large finite conductivity, R and X are positive in sign,
small in magnitude and approximately equal. For corrugated or dielectric-coated sur-
faces, although R and X are positive in sign, R is much smaller than X and hence Z is
almost purely reactive. When X is positive it is clear that Re X > 0. This condition is
employed in oar analysis. We also require that the scattered field (total field minus the
incident field) at infinity be outgoing and that the energy of the electromagnetic field
be finite. We wish to solve Maxwell's equations subject to the prescribed conditions
and obtain the amplitude of the reflected surface wave. We restrict 8„ in our work so
that 0 < 0O < 3tt/2. We leave open the possibility that for 60 = 3ir/2 the problem has no
solution for the kind of incident wave described here.

The time dependent form of Maxwell's equation is

curl H = — iueE, curl E = iuiiH., (2.4)

where E and H are the electric and magnetic field intensities, and e and n are the permit-
tivity and magnetic permeability of free space. We assume the time dependence to be
of the form exp (—iut). Because of the geometry, the field produced is independent of z
and hence the field is completely determined by the value of Ht . We have

Hx = Hv = E, = 0 (2.5)
and

Ex = ~~ , = (2.6)lue dy icoe dx

The field component H, = u satisfies the equation

(V2 + k2)u = 0 (2.7)

where V2 is the rectangular Laplacian and k is the propagation constant of free space.
Therefore, the mathematical problem reduces to solving the homogeneous wave equation
(2.7) subject to the mixed boundary conditions (2.2) and an incident plane wave of the
form given by (2.1). In addition to these requirements, we require that the far field be
outgoing and that the electromagnetic field be finite everywhere.

The solution of the above-mentioned problem can be found by using a method devel-
oped earlier by the authors [3]. It can be shown that the solution desired here is related
to the solution of a simpler problem in which the boundary conditions on the wedge
faces are not mixed and the incident excitation is a unit plane wave. In the simpler
problem, the field vanishes on the front face (x = 0, y < 0) of the wedge and the deriva-
tive of the field vanishes on the top face (y = 0, x > 0) of the wedge. Using this result
(see [10]), which we denote by F(x, y), the solution of the originally stated mixed boundary
value problem is given by

u(x, y) = U0(ik cos 6() + X) exp (\x) J exp (—X£)F(£, y) d£

r°° o— Ci exp (Xx) J exp (—XQIlDKkr) cos ̂  d£

+ jc2 exp [Xz - i{k2 + \2)1/2y], y < 0 ^ ^

I 0, y > 0
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where

F{x, y) = i X) /(2n+i)/a(.kr) exp [—i(2n + l)x/6] cos (2n + l)0o/3 cos(2n + 1)0/3. (2.9)
♦J n=0

Note that r = (z2 + y2)1/2, 0 = arctan x/y and 0 < 0 < 2x. J un+D/z{kr) is a Bessel
function of order (2n + l)/3 and argument kr and H[)\ikr) is a Hankel function of the
first kind of order (2n + l)/3 and argument kr. The constants Ci and c2 are given by

TT 7 /• /r>\ [cos 0O — COS 0t]E(0t + X, do)
e, - VJc exp (.,/«) cos (a, + „)/3  (2'I0>

and

_ 2U0 cos 0, cos 0/3 (o -\Y\
°2 cos id, + x)/3 [cos 90 + cos 61]

E(0, 60), which is the far field pattern function corresponding to (2.9), is given by

Eid, do) — gi/2
sin 2jd0 - 6)/3 sin 2(fl„ + 0)/3l

_ sin (0O — 0) sin (0O + 0) J

and the complex angle dt is defined by the relation

0, = — (x/2) + isinhf1 (X/A;). (2.13)

When 0O = x/2 and X is arbitrary, cx and c2 are given by

/. cos 2(0, + x)/3
Cl = U0k exp (W6) cos (e, -f t)/3 (2"14)

and

* - Jv (2'I5)
The amplitude of the surface wave is given by c2 .

3. Limiting cases for the amplitudes of the surface waves. The value of X is related
to the impedance Z by means of the relation X = iue Z = toe (2? — iX), where e is the
permittivity, R is the resistance and X is the reactance of the surface. For corrugated
or dielectric-coated surfaces, R and X are both positive and R is very small compared
to X. We now assume that X is real and positive and treat the cases when (1) X approaches
zero, and (2) X approaches infinity.

When \/lc is small we find that

dt -> —(x/2) + iiX/k). (3.1)
Using (2.10) the limiting value of c2 becomes

4(3) ' j j /X\ cos 0o/3c^^C/.expMy^, (3.2)

where 0O 5^ x/2. We note that the amplitude of the surface wave approaches zero as
\/k approaches zero. When 60 = x/2, this formula fails. However, if we make use of
(2.15) we find that

c2(x/2) —■» 2U0 . (3.3)
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A formula for c2 that is uniformly valid for all 60 and small X is given by

c2 = {4iU0(i\/k)[31/2 + i\/(3k)] cos 0o/3}/{3[cos d0 + tX/fc]}. (3.4)

The result (3.3) must be interpreted with care since the amplitude of the surface wave
should clearly be zero in the limit of small X. The explanation of the finite limit (and
the coefficient of 2) in (3.3) can be explained by examining (2.8). When 60 — iv/2 and
X = 0, the surface wave has the same form as the incident plane wave and hence is
indistinguishable from it. Thus (3.3) yields a term 2U0 exp [—iky] in this limit. Actually,
a field of the form U0 exp [—iky] is to be expected for the problem when X = 0, i.e., the
perfectly conducting wedge. However, if we examine the integrals appearing in (2.8)
when d0 = tt/2 and X is small, we find another incident plane wave contribution from
the first integral. Its magnitude is XJa and its sign is negative. The sum therefore yields
the expected incident plane wave contribution and hence there is nothing left to con-
tribute to the magnitude of the surface wave. The surface wave is therefore zero, as
expected. Therefore, it is interesting to note that Williams [9], who solves this problem
using a different method, obtains a different expansion for the amplitude of the surface
wave. Reducing his equation (22) to our notation we find agreement with our (3.2)
except for a factor of 2, i.e., our result is twice his result.

We next consider the case of large X/fc and obtain the limiting values of Cj and c2 .
When X/fc is large we find that

d, -> 7r/2 + i log 2X/fc. (3.5)

Substituting (3.4) into (2.11) we obtain

c2 —> 4C/0 exp (tV/6)(2X/fc)~1/3 cos 60/3, (3.6)

where 60 is unrestricted. We note that the amplitude c2 of the surface wave approaches
zero as X approaches infinity. Since the amplitude approaches zero for both small and
large X, there is some optimum value of X for which the magnitude of the surface wave
is a maximum. This optimum value may depend on the angle of incidence 60 . We illus-
trate this point in Figure 6 when the angle of incidence is taken to be zero and the
dimensionless surface reactance Xk = X/fc ranges from zero to infinity. A maximum
occurs when Xk is approximately 2.5.

4. Determination of the radiated far field. In the preceding sections we gave the
exact solution of the diffraction problem. A simple expression for the far field, however,
was not given. In this section we shall indicate briefly how the far field can be obtained
by using a simple method developed by the authors [2]—[7] that avoids the asymptotic
evaluation of the complicated integrals appearing in (2.8). We note first that the original
electromagnetic field component u in the far field can be written as the sum of two terms.
The first term can be found by using geometrical optics. The second term is due to
the diffracted field and has the form

(«)diff = m(0)r-1/2 exp (ikr) (4.1)

The coefficient m(6) can be constructed algebraically. In using the method it is again
convenient to make use of the complex far field amplitude corresponding to a plane
wave diffracted by a right angled wedge when the field vanishes on one surface (0 = 3x/2)
and the derivative of the field vanishes on the other (6 = 0). Reiche [10] gives the solu-
tion of a plane wave diffracted by a right angled wedge where the field vanishes on both
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Fig. 2. Case A: 0 < < vr/2

surfaces. By using some of his intermediate results, the solution of the desired problem
can easily be found. Proceeding in the manner indicated in the references, the diffracted
angular dependence of the far field can be shown to be

m(o\ = [K tt O'fc cos do + X) exp (tV/4)
K) Uo (ik cos 0 - X) cos (0, + x)/3

•[E(d, 60) cos (6, + ir)/3 — E(8, + x, 0O) cos 0/3]. (4.2)

The function E(0, 0O) is given in equation (2.11).
It is of interest to show that the above expression for the diffracted far field reduces

to the well known result for the diffraction of an incident plane wave by a perfectly
conducting wedge. This special case occurs in the limit as X/fc approaches zero. In order
to show this, we first make use of the identity

K{d, 60) cos 6 + E(6, d0) cos 60 = ^7/2 cos 20o/3 cos 0/3, (4.3)

where
ran 1 fsin(gQ-g)/3 ■ sin (0O + 0)/3l ,
W, do) - 3l/2 [_ gin {do _ e) + sin {0o + e) j, (4.4)

is the well known pattern function due to Reiche [10] for X = 0. It is, therefore, the
pattern function corresponding to the solution N say of the problem for the same incident
wave as F, but with Neumann condition on both faces.* Substituting (4.3) into (4.2)

*The existence of such an identity is forced a priori, since Nx and F both obey the same boundary
condition. Since Nx + F cos 60 has no incident wave term, it must be a multiple of IIm (kr) cos 9/3.
Therefore, there must be an identify for all x and y, of the form Nx + F cos 80 —» B($0) Hi/3 (kr) cos
0/3 = 0 where B{6b) can also be determined. The far field form of this identify yields (4.3).



1962] DIFFRACTION OF PLANE WAVE BY RIGHT ANGLED WEDGE 103

y

Region i
ncident and

Reflected Waves (from top)

Fig. 3. Case B: tt/2 < $0 < tt
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we have

t n\ fn / T\l/2rr /■ /^\ 0^ COS Oq 1 X) COS 9 -rr-ff. n \
= u° exp (i7r/4) (ik cos 0 - X) cos e0 K{6> ^

J, _ cos 9/3 cos (91 + t)K(9, + x, 90)~1
L cos 6 cos (0, + x)/3 K{9, 60) J

If we now permit X/fc to be small, it is easily shown that the second expression appearing
in the brackets is of the order X/k and hence vanishes. The far field amplitude then
reduces to the simple expression

m{9) = -(2/xk)1/2U0 exp (ix/4)K{9, 60). (4.6)

which was to be shown.
In order to examine the special case of large X/Jfc, it is convenient to write (4.2) in

the form

me) = (2/xQ1/2Uo exp e0)

|\ _ cos 6/3 E{9, + x, 90) "1
"L cos (0, + x)/3 £(0, 0O) J (4.7)

In the limit of large X/fc, it is easily shown that the second expression appearing in the
brackets is of the order (X/Zc)-2/3 and hence vanishes. The far field amplitude then
becomes

m(0) -> —(2/x/c)1/2C/0 exp (i%/l)E{9, 90). (4.8)

Fig. 5. Radiation pattern for incident plane wave.
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DIRECTION OF INCIDENT PLANE WAVE
SAME AS THAT SHOWN IN FIGURE 5

Mi
<x. 

3cosh 2(r sinh" 'x, ) + sinh2(^ sinh 'x, )1'/Z

DIMENSIONLESS REACTANCE Xk=X/k

Fig. 6. Normalized surface wave amplitude versus the dimensionless reactance.

Hence, for the case of infinite X//c, the far field amplitude reduces as expected to the
appropriate result for an incident plane wave diffracted by a right angled wedge in
which a Neumann boundary condition is prescribed on the upper face and a Dirichlet
boundary condition is prescribed on the front face.

We shall now summarize the results for the far field. See Figures 2, 3, and 4 for defini-
tions of the regions referred to in Cases A, B, and C, respectively. The expression for
m(6) is given by (4.2) when \/k is arbitrary, by (4.6) when X/k is zero, and by (4.8)
when A/k is infinite. Figure 5 illustrates the radiation pattern | (2/-irk)1/2m(6)/U0 |2.

Case A: 0 < 60 < k/2
1. Regions 1 and 2: (0 < 6 < tt — 60)

u = U0 exp [—ikr cos (0 — 0O)] + U0 exp [—ikr cos (0 + 0„)] + yV^ exp (ikr)

2. Region 3: (it — 60 < 6 < 7r + 0O)

u = U0 exp [—ikr cos (0 — 0o)l + exp (ikr)r

3. Region 4: (x + 60 < 6 < 3tt/2)

u - exp (ikr)

Case B: ir/2 < 60 < ir

1. Region 1: (0 < 6 < tt — 60)

*YW f
u = Ua exp [—ikr cos (6 — 0O)] + U0 exp [—ikr cos (6 + 0O)] + exp (ikr)
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2. Regions 2 and 3: (ir ~ 60 < 6 < 2ir — 60)

u — U0 exp [—ikr cos (0 — 0O)] + ™i/2 exp (ikr)

3. Region 4: (2x — 0a < 0 < 3tt/2)

u — U0 exp [—iAr cos (0 — 0O)]

+ ^ ^ 0° - X exp f+i/cr cos ^ + 0o)] + 7^ exP W

Case C: ir < 0O < 3ir/2
1. Region 1: (0 < 0 < 0O — it)

w = -^r exp (tfcr)

2. Region 2: (80 — t < 6 < 2r — 0O)

u = U0 exp [ —ifcr cos (0 — 0O)] + -7^ exp (z'fcr)r

3. Regions 3 and 4: (2tt — 0O < 0 < 37r/2)

u = U0 exp [—ikr cos (0 — 0O)]

+ U0 ̂  g° 1 x exp ̂ kr C0S ̂ + ^ + 7^ exP W-
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