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—NOTES—

LONGITUDINAL VIBRATION OF A PROLATE ELLIPSOID*
By FRANK L. DIMAGGIO (Columbia University)

1. Introduction. In this paper, the mode shapes and frequency parameters for
longitudinal vibration of a bar whose cross-sectional area varies parabolically along
its axis are obtained as single tabulated prolate spheroidal angle functions and their
eigenvalues. The results tediously obtained previously for the case of a centrally clamped
ellipsoid, using a power series expansion, are quickly verified.

2. Previous solution. In a previous paper,! Kouvelites obtained the differential
equation satisfied by the mode shapes of an ellipsoidal rod of major axis 2a vibrating
longitudinally as

2a

1-—a?

in which primes denote differentiation with respect to « = z/a, « being the coordinate
along the longitudinal (major) axis measured from the center of the rod, U(a) is the
mode shape, and

U —

U+ NU =0, (1)

N = p'd’/E, @

where p is the volume density, E is Young's modulus and  is the circular frequency.
For a centrally clamped rod the solution was obtained as an infinite series in odd
powers of a with the coeflicients satisfying a recurrence equation containing N. By a
tedious process of trial and error, N (and thus U) were determined numerically by
requiring that the longitudinal stress be zero at the ends, i.e., by requiring that

U'(+1) = 0. 3

Kouvelites noticed, apparently by observation of plots, that the series solution for U
was divergent at @ = £ L except for that value of N which satisfied Eq. (3).
3. Solution as a prolate spheroidal angle function. If eq. (1) is rewritten as

(1 —a)UT + N1 — AU = 0, 4)
the general solution that is finite at @ = =+ 1 is seen to be®
U= Son(N ) a)y (5)

where S,, are the prolate spheroidal angle functions of the first kind of order zero and
degree n which have recently been tabulated®® and N satisfies the frequency equation

Aa(N.) = N, (6)
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in which A,(X) is the associated eigenvalue, also tabulated in Refs. 2 and 3. For a
centrally clamped plate only the antisymmetric modes, i.e., those corresponding to n
odd are pertinent. By using the tables and graphs of Ref. 2 the results obtained with
such difficulty in Ref. 1 may be quickly checked and found to be correct. It may also
be seen directly from eq. (4), rewritten as

(1 —-a)U"” — 22U’ + N1 — &)U = 0, (7

that, since S,, is analytic, the solution given by Eq. (5) satisfies Eq. (3).

4. Solution for an unclamped ellipsoid. To demonstrate the utility of recognizing
that the general solutions to Eq. (1) are expressible as tabulated functions, consider
the case of the free ellipsoid. Then Eqs. (5) and (6) are still valid but even values of n
are also permissible.

As an example, the lowest non-zero root N, satisfying Eq. (6) is obtained from Table 10
of Ref. 2 after a simple linear interpolation as

N, = 14.36. ®

It may also be useful to point out that all of the results obtained above are valid
for a bar whose cross-sectional area variation is given by

Ala) = k(1 — o), ()
in which % is any constant. The ellipsoid is a special case of Eq. (9).

CANONICAL EQUATIONS FOR SYSTEMS HAVING POLYGENIC FORCES*
By RICHARD R. AUELMANN (Aeronutronic, Newport Beach, Cal.)

Lanczos [1] uses the term “polygenic” to identify forces which are not derivable from
a scalar potential function. Dynamical systems which contain polygenic forces are
nonconservative; however, a system is also nonconservative if time appears explicitly
in the Hamiltonian. Synge [2] and Ames and Murnaghan [3] have derived Hamilton's
equations,

dp,  0H dg, oH

dt=_a_q,+Q” dt=ap,’ (7‘=1,"'N), (1)

directly from Lagrange’s equations for systems containing the generalized polygenic
forces @, . The p, and ¢, are the generalized momenta and coordinates, respectively.
The forces which are derivable from a scalar potential function are taken into account
in the Hamiltonian H. The polygenic forces do not appear in the second set of (1); the
reason is that the Lagrangian formulation (from which these equations were derived)
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