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in which \0n(N) is the associated eigenvalue, also tabulated in Refs. 2 and 3. For a
centrally clamped plate only the antisymmetric modes, i.e., those corresponding to n
odd are pertinent. By using the tables and graphs of Ref. 2 the results obtained with
such difficulty in Ref. 1 may be quickly checked and found to be correct. It may also
be seen directly from eq. (4), rewritten as

(1 - a)U" - 2aU' + N(1 ~ a)U = 0, (7)
that, since Soa is analytic, the solution given by Eq. (5) satisfies Eq. (3).

4. Solution for an undamped ellipsoid. To demonstrate the utility of recognizing
that the general solutions to Eq. (1) are expressible as tabulated functions, consider
the case of the free ellipsoid. Then Eqs. (5) and (6) are still valid but even values of n
are also permissible.

As an example, the lowest non-zero root N2 satisfying Eq. (6) is obtained from Table 10
of Ref. 2 after a simple linear interpolation as

N2 = 14.36. (8)

It may also be useful to point out that all of the results obtained above are valid
for a bar whose cross-sectional area variation is given by

A(a) = k(l - a2), (9)

in which k is any constant. The ellipsoid is a special case of Eq. (9).

CANONICAL EQUATIONS FOR SYSTEMS HAVING POLYGENIC FORCES*
By RICHARD R. AUELMANN (Aeronutronic, Newport Beach, Cal.)

Lanczos [1J uses the term "polygenic" to identify forces which are not derivable from
a scalar potential function. Dynamical systems which contain polygenic forces are
nonconservative; however, a system is also nonconservative if time appears explicitly
in the Hamiltonian. Synge [2] and Ames and Murnaghan [3] have derived Hamilton's
equations,

dpr dH dqr dH+ -g-W,' fr-1'•••*>' «
directly from Lagrange's equations for systems containing the generalized polygenic
forces Qr . The p, and qr are the generalized momenta and coordinates, respectively.
The forces which are derivable from a scalar potential function are taken into account
in the Hamiltonian H. The polygenic forces do not appear in the second set of (1); the
reason is that the Lagrangian formulation (from which these equations were derived)
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admits only point transformations. We will show that (1) is a special form of a general
set of equations

where both Pr and Qr are generalized polygenic forces, and that (2) is invariant under
a canonical transformation.

We start with the transformation

a, = a,-(p, q), (i = 1, • • • 22V). (3)

Differentiation of the a* with respect to time, and substitution of (2) into the resulting
expressions provide

f-m+?(!*«--Is4 (•->.••■2"). «>
where the [a.JJ] are the Poisson brackets representing

/ da j Oil <)a% dH\
d^rdqJ'

[atoij] and the:

[0CiH] = X) [«>«>]

(t = 1, ••• 22V).

In terms of the Poisson brackets [«,«,] and the new Hamiltonian K(a) — II {g. p), we have

aK
da,■ '

dotj r i ^r/'- dctj r i djPr
a— = ~ 2-> a > a dpr j da,- dqr , dat

The set (4) can now be written as

§*-».-*>• (5)

With
= p[ , • • • an = , ajv+i = q{ , • • • = 5.v

and the formation of K'(p', q') = K(a), the set (5) becomes

f " ? " P:) + ? - 4
f - Z [«m(^ - «) + ? - 4 fr -1, ■ jv),

where P' and Q' are defined by

«-2(^ + ̂ 4 ei-zdli-. + H®.).
The necessaiy and sufficient conditions for p'r and q'r to be canonical variables are

b'p,'] = [er'g.'] = o,
WrV>] = = 5r. ,

(6)

(7)

(8)



1962] WILLIAM R. HASELTINE 185

where 8rs is the Kronecker symbol. If the primed variables satisfy (8), then (6) reduces to

dPr _ _£^L _l_ q' dqr _ dK , ... AA CQ")
dt ~ dq'r + Qr> dt ~ dp'r P" (r ~ ^ (9)

which has the same form as (2).
We have shown that (2) is invariant under a canonical transformation

p' = p'(p, q), q'r = q'Xv, q), (r = l, ••• N). (10)
Also, if (1) is transformed according to (10), we again obtain (9) where

Consequently, (2) rather than (1) is the invariant form under a canonical transformation
for systems which contain polygenic forces.
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AN EXTENSION OF POINCARE'S CONTINUITY THEOREM*

By WILLIAM R. HASELTINE ([/. S. Naval Ordnance Test Station, China Lake, California)

Abstract. A theorem is derived which is useful in establishing the existence of
periodic solutions of systems of nonlinear ordinary differential equations involving a
small parameter in certain cases where first-order methods break down.

1. In studying systems of nonlinear ordinary differential equations by perturbation
methods, one of the key questions is the location of periodic solutions; and a principal
tool for the search for them is Poincare's continuity theorem (see for example, Theorem
5.2 of Ref. 1). In some important applications the theorem is inapplicable as it stands,
owing to the vanishing of a certain determinant. We present a generalization of one
case of the theorem which is useful in some of these degenerate cases. We will also show
how the original problem may, if certain conditions are satisfied, be reduced to the case
covered by the new theorem

2. Theorem: Given the set of n + 1 equations

= i +

^ = Xrir,.«?, y,\),

(i = 1,2, ••• ,n) (1)
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