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LOMMEL FUNCTIONS WITH IMAGINARY ARGUMENT*

By CHARLES N. ROLLINGER (United States Air Force Academy, Colorado)

Abstract. To express the solution to certain physical problems in terms of a real
function of a real variable a new function called a modified Lommel Function is defined.
Some of its properties are presented along with some of the relations between this new
function and modified Bessel functions.

Introduction. In the study of the steady-state temperature distribution in a fin
of variable cross-sectional area with internal heat generation it is necessary to determine
a particular solution of the nonhomogeneous differential equation

where v and m are constants. Equation (1) is closely related to the equation

+ <*' ->> = *"'• ®

which has as a particular solution the Lommel function S„,„(x) derived in [I]. A summary
of Lommel's paper is given by Watson in [2] and further references to Lommel functions
appear in Luke [3] and Erdelyi [4].

The substitution x = iu transforms (2) into the equation

*3L + ^
du2

which has as a particular solution

y = (4)
Thus,

y = (5)
is a particular solution of (1).

In a physical problem it is usually desirable to present the solution in real form. It
is therefore convenient to define a new function, which will be a real function of a real
variable. It seems appropriate to call this function a modified Lommel function since
it is related to in much the same manner as Iv(u) is related to JJiu), and to
denote it by the symbol R„,Ju) in analogy to the relationship between JJiu) and Iv{u).
The modified Lommel function R„,Ju) will be defined by the relation

Rn,r(U) — (6)

In the remainder of this paper the series definition of R„,v(u) will be presented for various
conditions on the quantities n + v or m — v, a recurrence formula for the modified Lommel
functions will be presented, and some relations between modified Bessel functions and
modified Lommel functions will be developed. The treatment of the modified Lommel
function in this paper will closely parallel that of the ordinary Lommel functions given
by Watson [2],

*Received May 29, 1963; revised manuscript received July 18, 1963.
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Ascending series—When neither n + v nor n — v is an odd negative integer,
it can be shown that a particular solution of (1), proceeding in ascending powers of
u beginning with u"+1, is

y = -

or equivalently

+ 77 1 1 \2 2777 I o\2 27 + • • • (7)LOi + l)2 - x2 ' Km + l)2 - f ][(m + 3) - ,2]
■■■]

„ = V (u/2)2m+2T([fi - „ + l]/2)r([M + r + l]/2) , .
V U & T([m - v + 2m + 3]/2)r([/i + » + 2m + 3]/2)' W

For brevity the expressions on the right are written as r„,„(w); they will be referred to
as the associated function. Thus, y = r„t,(u) is a particular solution of (1), except when
either of the numbers ju i v is an odd negative integer.

Descending series—R^.,(u). The function R^.Ju) is derived from the consideration
of the particular solution of (1) in the form of a descending series. A particular solution
of (1) proceeding in descending powers of u beginning with u"'1 is

= ,-fl + ~ ? ~ ^ ~ 1)2 - "2]fc ~ 3)2 - ^ + • • -I.L U u J (9)

This series converges only if it terminates, but if it terminates it is a solution of (1).
The series will be called R„,,(u).

The series terminates only if one of the numbers m + v or ju — v is an odd positive
integer. If n — v is an odd positive integer it is apparent that

n = v + 2p+l, (10)

and that

7? (oA = 11*-1 y* rp - V + l]/2)r([/x + V + l]/2)  , .
h, (w/2)2mr([M - V + 1 - 2m]/2)r([M + » + 1 - 2m]/2) ( )

or equivalently

R (u) = u"'x T r(p + i)r(p + v + j) (l2)
-yW h (u/2)2mT(p + 1 - m)r(p + p+l- m)

Letting n = p — m, leads to the equation

R (u) = T (V2)2""2"r(P + Dr(P + " + 1) (13)
K,.M « 2-s T(n _|_ J)r(n + „ + 1)

or equivalently

- 2-r(p + m„ + . + 1)[ t „ - t, „r(n+:+ !)]• <14)

Recognizing that the first series is IJu) and letting N = n — (p + 1), one obtains

R0„(u) = 2"~1T([n - „ + 1]/2)T([m + „ + l]/2)/,(«)

_ V (V2)2Ar+2r(U - y + n/2)r(b» + ? + 11/2)
h r([M - «- + 2N + 3]/2)r(Lu + V + 2N + 3]/2)'
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The series in (15) is identical to that in (8) so that

R..M = 2""1r(iM - I" + l)r(|M + + !)/,(«) + »•„.,(«) (16)
or equivalently

KM = -2"-1r(iM - + my + b + 1)^ /,(«) + (17)

When n — v = 2p + 1, the function

2*-,r(iM -iv + my + i» + i) sing(A~ "3) 7-» <18)
Sin Ztv

is zero, and so, when n — v is an odd positive integer

n / \ , * , - v + 11/2)T([m + f + 11/2) rr . , Nlr , ,«„.,(«) = r„,,(w) H 1 • 0  [sinir(/i — v) /_»(«)
Sin Z7TT

- [sin 7r(/x + f)]7„(w)]. (19)

From (9) it is evident that R„,,(u) is an even function of v. It is also evident that the
right hand side of (19) is an even function of v. Thus (19) holds also when n — ( — v)
is an odd positive integer, i.e., when n + v is an odd positive integer. Thus it holds in
all cases for which /?M,„(u) has, as yet, been defined, and it will be adopted as the general
definition of R„,v(u) except that when v is an integer n the equivalent form

Rh.n(u) = r„,»(w) + 2"_1r(|yu — \n + J)r(Jju + \ri + §)

• sin 7r(ju — ri)Kn(u) — cos tt(m + n)/n(w)J (20)

must be used.

It will be shown in a later section that R^.,,(u) has a limit when n ± v is an odd negative
integer, that is when r„,„(w) is undefined.

Recurrence formulas for R„,r(u). From (9) it can be shown that

R„+,.,(«) = u»+l + [0 + l)2 - (21)

Also from (9) it can be shown that

£ [uR,.,{u)\ = (M + f - Du'R^.._,(«), (22)

so that

R:.M + = (n + v - (23)

From (23) using the fact that /?M,„(w) is an even function of v it is easy to obtain

Rl.v(u) ~ \~)Ri:'(U) = (p ~ v ~ lKfi»-l,.ti(«). (24)

Adding and subtracting (23) and (24) one obtains

= (m + v — 1)^-1 ,,-i(u) — (ji — V — !)#„_!.,+,(«) (25)
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and

2R'„,v(u) = (m + v — 1 )R„-1,y-1(u) + (m — v — +i(m). (26)

The functions R„,v{u) can be replaced throughout these formulas by the associated
functions

R„,y{u) when n ± v is an odd negative integer. It is necessary to consider two
distinct cases which are defined by

Case I: Either n + v or /x — v, but not both, is an odd negative integer.
Case II: Both /x + v and y. — v are simultaneously odd negative integers.

Case I. When n + v or n — v is an odd negative integer equation (19) assumes an
undetermined form. However, if m — v is an odd negative integer*, one may write

M = V - 2p - 1 (27)

so that

R„,,(u) = Ry-2V~i,y(u). (28)

Then Rv-2v-i.v(u) can be written in terms of ,„(m) by repeated use of (21) which gives
p—1 p — 2p+ 2m 73 / \

" ,   + \ • (29)„=0 2 (—p)m+1(y — p)m+1 2 p!(l — v)„

R,-i,v(u) is defined by the limiting form of (21), namely

r -m"+i
JB,_!.,(«) = lim 7 T

M-v-i L(m — y +
-u"+' + Ru+2.„(u)

+ 1)(m + + 1)J (30)

Since both the numerator and the denominator vanish at m = v — 1, it is convenient
to use L'Hospital's theorem. Thus

R,-i,M = 
Â

—u" In m + ^- R„+2,v(u) • (31)
d/u

Performing the indicated differentiation and evaluating, one obtains

R.-,.(«) - -T rw E M4 ^ m!r(* + m + 1) 2 ln|- — \//(m + 1) — \p{m + v + 1) J

- I'in?00 [7-(m) ~ [cos 2x,]/,(«)]. (32)Sin Zirv

It might be well to point out that Case I can never occur when v is an integer. For
if v is an integer and n — v is an odd negative integer then m must also be an integer. It
is easy to show that under these hypotheses m + " must be either an odd negative integer
in which case both n — v and m + v are odd negative integers and one has Case II rather
than Case I, or n + v is an odd positive integer in which case formula (9) can be used.

A special case of (32) which is of interest occurs if v = n/2 where n is an odd integer.
In this case (32) reduces to

*Since R„tP(u) is an even function of v, it is sufficient to consider the case in which p — v is an odd
negative integer.
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(u/2)2m
R (n/2) —1. (n/2) (u) >n/'T[2) m!r(p!r([2m + n + 2]/2)

2 In ~ — \p(m + 1) — t(m + f + *) (33)

Case II. If m + v and n — v are both odd negative integers it is necessary but not
sufficient that jibe a negative integer and that v be an integer. Thus in this case one
may write

fi = — n — 2p — 1 (34)

where n and p are positive integers. Repeated use of (21) gives
P~1 —n—2p + 2m X) / \

R-n-2„-l,n(u) = 2»-«(_p)_+1(_n _ p)m + ] + 22>!(1'+«),' (35)

In order to evaluate /?_„_!,„(«) one may use the derivative formula (22)

£ |u'J2„.,(tt)] = (n + * - lK^-.-.W. (22)

Using the chain rule it follows that

£ [M"X,,(u1/2)] = Km + r - 1)M('-1>/X-.„-.(m,/2), (36)

and

£2 [m"/2^.Xwi/2)] = J-Km + " - D(m + x - dW-2)/2R^,^(ul/2). (37)

Thus one is led to the result
11 (f—»)/2 n

^ (u>/2R„„(u1/2)) = n (M + , + 1 - 2k)R^n.,_n(uU2). (38)

Letting v = 0 and n = — 1 in (38) there results
in —n/2 n

~R-U0{uU2) = II (-2k)R-n-Un{uU2) (39)

or equivalently

» = . 2V ft-i.oC")• (40)
n (-2A) d(M }
A: = 1

Thus /2-n_i,«(«) can be expressed in terms of the n-th derivative of i?_1-0(w) with respect
to the square of its argument.

It remains to determine R-li0(u). When v = 0 the recurrence formula (21) becomes

rm = (4i)
If Ai = —1 the right side of (41) is an indeterminate form so by L'Hospital's theorem

(42)R-i,o(u) — 2 ■fs [-u"+i + R„+2,„(«)]
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From (20)

#„+2.o(w) = r„+2,0(u) + 2"+1[r(^ + f)n- [sin iiv]K0(u) - [cos ^]h{u) >. (43)fo(«)}.

Performing the indicated differentiation in (42) and evaluating the result at n = —1
gives the final result

R-i.oiu) = { In| -f(m+ 1)J - |Mm + 1) + x2}. (44)

Thus by combining equations (35), (40) and (44) it is possible to evaluate R„,,(u)
when both m + v and m — v are odd negative integers.

Relation of modified Lommel functions to modified Bessel functions. It is possible
to express the important integrals

J u"I,(u) du and J u"K,(u) du

in terms of modified Lommel functions. Consider the following derivatives

A
duj- = kI,-,(«R-,„-.« + «7,(u)Gi - v - 1)R^M (45)

and

[m1"'/,-!^)•«'#„,,(«)] = «/,(")#„.,(«) + (m + v — l)tt/,_I(u)fl,-i.,-1(u). (46)

Multiplying (45) by the quantity (m + v — 1) and subtracting (46) gives

^ [(m + v - 1)«/,(m)J?„_i,,_,(«) - uI.-iiujR^.iu)]

= uIy(u)[[(M - l)2 - v2]R^2,,{u) - R.Ju)], (47)

but from (21)

to* - I)2 - "2R.-2» = R„M - u"-\ (48)

Combining (47) and (48) and integrating the result gives

J u"I,(u) du — w/,_i(m).Rm.,(«) — (n + v — l)u/,(u)i2M-i,,-i(u). (49)

By a similar procedure it can be shown that

J u"Ky(u) du = —(n + v— l)uK,(u)R„-i— uK,^(u)Ru_,(u). (50)

Concluding remarks. In the preceding sections the modified Lommel function
has been defined and some of its properties and relations to other functions have been
presented paralleling Watson's treatment of Lommel functions. This modified function
appears to be useful for expressing the solutions of certain physical problems in terms
of a real function of a real variable and for evaluating certain integrals involving modified
Bessel functions.
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At the present time a project is underway to compute extensive tables of R„_,(u).
It is hoped that these tables will be published in the near future.
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