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FUNCTION-THEORETIC SOLUTION TO A CLASS OF DUAL INTEGRAL
EQUATIONS AND AN APPLICATION TO DIFFRACTION THEORY*

ROBERT A. SCHMELTZER (Bell Telephone Laboratories, Holmdel, N. J.)
and MYRNA LEWIN (Courant Institute of Mathematical Sciences, New York University)

Summary. Dual integral equations of the type

f uxf(u)J„(ru) du = g(r), 0 < r < 1,
Jo

u(u2 + a2)~W2f(u)J,(ru) du = h{r), 1 < r < <»,I
where g(r), h(r) are prescribed functions and f(u) is to be found, are solved exactly by the
application of function-theoretic methods. As an example, a closed-form solution is
obtained for the diffraction of an electromagnetic wave by a plane slit.

1. Introduction. A considerable number of boundary-value problems arise in which
the boundary conditions are "mixed" in the sense that the unknown function satisfies
different types of boundary conditions over distinct portions of the same boundary.
An important class of problems of this kind can be reduced to the solution of the dual
integral equations of the type

/;

f uxf(u)J„(ru) du = g(r), 0 < r < 1, (1)
«/o

u(u2 + a2)~l/2j(u)J t(pj) du = h(r), 1 < r < °o , (2)

where g(r), h(r) are prescribed functions and f(u) is to be found.
These equations were previously solved for a number of special cases. For example,

the case in which a = 0, m = v, X > 0, h(r) = 0 was solved by Titchmarsh [1], whose
work was later extended by Busbridge [2] and Peters [3]. Dual integral equations of
the form (1), (2) arise in the problem of the diffraction of electromagnetic waves by a
plane slit. For the case of normal incidence, the problem has been reduced to the solution
of (1), (2) with a = ie, e real; n = v = — §, X = 1, h(r) = 0. This particular problem
was considered for the narrow slit, i.e., e <3C 1 in a paper by Groschwitz and Honl [4],
and later criticized by Tranter [5], Muller and Westpfahl [6], The exact solution for this
problem has not appeared in the literature. Equations (1), (2) also find application in
the linearized theory of supersonic flow over a thin wing of infinite span [7], [10].

The method developed here is based on function-theoretic techniques [8] and leads
to a closed-form solution of (1), (2) under quite general conditions. It is shown that
our solution reduces to the known solution for the case a = 0. As an example, the solution
is applied to the problem of the diffraction of an unsymmetrical electromagnetic wave
incident upon a slit of arbitrary width.

2. Reduction of the dual integral equations. We begin by reducing the dual integral
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equations (1), (2) to a form suitable for the application of function-theoretic techniques.
Our method is similar to that employed by Peters. [3]. Our object is to change the orders
of the Bessel functions appearing in (1), (2) from /j. and v respectively, to J. This is
accomplished in (1) by multiplying each side of (1) by (x2 — r2)p~''~IrM" and integrating
from 0 to x. If it is assumed that the orders of integration of the resulting double integral
can be interchanged, we can use a result due to Sonine, namely

f (a:2 - ry-»-y+l J Jur) dr = 2"-"-1r(p - ^xV'JJxu), -1 < n <p, (3)
Jo

to obtain

f ux+"~"f(u)Jp(xii) du
Jo

= Z"+ X[ f (x - ry-"-'r"+1g(r) dr, -1 < „ < p, 0 < x < 1. (4)
r(p n) Jo

Similarly, multiplying each side of (2) by (r2 — x2)'~*-V"', integrating from x to in-
finity, and using the result

[ (r2 - x2y-*-V-'J,(ur) dr
J x

_ 2'~v~1T(y — p)uv~'x~vJv(xu), u > 0, p < v < 2p + f, (5)

we find

f uv-+,(u2 + a2y1/2f(u)Jp(xu) du
Jo

= ^7   f (r2 — x2)'~v~1r~'h(f) dr, p < v < 2p + f, 1 < x < °° . (6)
r(f — p) jx

If we choose p = i, X + m— 1 = 1 — v and set f(u) = u~"+1f(u), we have

[ f(u) sin (xu) du = . f (x2 — r2)~"~1/2r+"g(r) dr, 0 < x < 1, (7)
Jo 1 (.2 W Jo

f (u2 + a2)~1/2f(u) sin (xu) du
Jo

= I"{r? ~ x2y~3/y"h^ dr< 1 < ® <». (8)

subject to the restrictions

— 1 < ju < +| and J < v < f. (9)

The range of m and v specified in (9) may be altered by multiplying (1), (2) by appropriate
powers of r and then differentiating and/oifintograt ing under the integral sign, applying
the formulae

(r lSrV+mJ'+JTU) = ' (10>
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(r jXr~°~mJ»+Jru) = i-lTuy-'J^ru), (11)

and subsequently changing the order of the Bessel functions to
Consider for example, the case when ju = v = /3 < §, for which the restriction on v

imposed by (9) is violated. Using (10) with m = 1, we can write (2) in the form

A
dr ,

[ (u2 + a2)~1/2f(ii)r*+1J„+i(ru) du = rv+1h(r), (12)
Jo

which upon integrating becomes

J (•u2 + a2)JV+1 (ro) du = J t'+1h(t) dt. (13)

We can now apply Sonine's integral as above, so that the order of the Bessel function
in (13) is changed from v + 1 to If we do this we obtain an alternative equation for (6)

f u ' \u2 + a2) 1/2j(u) sin (xu)
Jo

du

= r^''^(ijg [ ir2 - x2y-1/2r~2"1 f" t'+1h(t) dt dr (14)

and is valid if — J < v < 3/2, 1 < x < <».
Therefore, when — l<ju<i, % < v < 5/2, the dual integral equations (1), (2)

are transformed to (7), (8). For —1 < n < §, —| < v < 3/2, equations (1), (2) are
transformed to (7) and (14). Similar procedures can be employed to transform (1), (2)
for other values of n and v. The value of X is chosen so that the dual integral equations
can be written in the form

/ <p(u) sin (xu) du = q(x), 0 < x < 1, (15)
Jo

f0 V(u2+nJPdU = T^' 1 < X < °°'
There is no loss of generality if it is assumed that r(x) = 0. This is not necessary but
will simplify the labor of solving (15), (16). To show this, we let

<p(u) = <po(u) + pi(w), (17)

where <Pi(u) satisfies

r'apmMdu_ f°, o<ki,
],(n+a)

Equations (15) and (16) then reduce to the form

/ <po(u) sin (xu) du
Jo

= q(x) — - f sin (xu)(u2 + a2)w2 f r(t) sin (ut) dt du, 0 < x < 1, (19)
7T Jo J1

f" <p0(u) sin (xu) , n , /ri^Jo + w du = 0, l<x< <». (20)
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3. Solution of dual integral equations. We proceed to the solution of the dual
integral equations (15), (16) with r(x) = 0. Equation (15) is satisfied by

2 r"
<p(u) = - / ip(t) sin (ut) dt, (21)

X Jo

provided that
i(x) = q{x), 0 < x < 1 (22)

where \p(x) is assumed Lebesgue integrable L(0, °°) and Holder continuous in the
intervals 0 < x < 1, 1 < x < oo.If (21) is substituted into (16) and the order of inte-
gration of the resulting double integral changed, we obtain the integral equation

The inner integral is uniformly convergent for all values of x and its value is given
by Watson [9]. Hence (16) can be written in the form

- [ \f/(t){K0(a | x — t |) — K0(a | x + I |)} dt = 0,
TT Jo

1 < | x | < co, | arg a \ < x/2 (24)

where K0 is the modified Bessel function of the third kind of order zero. Using (22), we
obtain the integral equation for 1 < | t | < «>

- [ \p(t){K0(a | x — t |) — K0(a | x + t |)} dt = —G(x), 1 < | x | < co, (25)
7T Ji

where

G{x) = - f q(t){K0(a | x — t |) — K0(a | x + t |)} dt, 0 < | x | < oo. (26)
"7T Jo

Consider the function F{Z) defined by

F{Z) ~ Z)]~ Ka[a(t + Z)]} dt (27)

for the sector —2x < arg Z < — x. The kernel of (27) is of the form

K0[a(t - Z)] - K0[a(t + Z)] = -log (t - Z)I0[a(t - Z)]

+ log (t + Z)I0[a(t + Z)] + Q(Z, t), (28)

where J0 is the modified Bessel function of the first kind of order zero, and Q is an entire
function of Z. F(Z) can be analytically continued to an analytic function on a Riemann
surface having branch points at Z = ±1. To show this, define a branch cut on the
line 1 < R{Z) < «> such that K0[a(t — Z)\ is analytic in the sector —2x < arg Z < 0 or

—it < arg (t — Z) < +x. (29)

Define a second branch cut on — <» < R(Z) < — 1 such that K0[a(t + Z)] is analytic
in the sector — x < arg Z < x, or

—x < arg {t + Z) < x. (30)
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If we write F(Z) in the form

F{z) = ~k C ~ z)] ~ KMt + z)]! dt
+ jz[ iKWofafl - z)] - K0[a(t + Z)]\ dt (31)

and define
F+(x) = limJ(z)_0+ F(Z) R(Z) = x, (32)

F~(x) = lim7(Z)_0- F(Z) R(Z) = x, (33)

then it is readily verified that for x real,

h[F+(x) + F~(x)\ = m\K0(a \t - x |) - K0(a \ t + x \)} dt,

0 < | x | < oo. (34)

The right hand side of (34) is known for 1 < | x | < <» from (26) and may be analy-
tically continued off the real axis by replacing x by Z = x + iy. The modulus signs in
the argument of the K0 functions in (26) can be removed in the interval 1 < x < 00
and G(x) = —G(—x). Hence G(x) is analytic and can be continued from the real axis
1 < | x | < oo into the complex Z-plane. Equating the right hand side of (34) to the
analytic function of (26), we obtain

F+(x) + F~(x) = —2irG'(x), 1 < | z | < oo (35)

providing a relation for analytically continuing F(Z) to an analytic function on all sheets
of a Riemann surface having branch points at Z = ±1. Since F(Z), as defined by the
integral (27), is continuous for all | Z | < 1, we also have

F+(x) - F~(x) = 0,. 0 < | z | < 1 (36)

Equations (35) and (36) define a Hilbert problem for the sectionally holomorphic func-
tion F(Z) which can be determined uniquely and explicitly provided the behavior of
F(Z) is prescribed at infinity. The behavior of F(Z) at infinity can be determined from
the definition integral (27).

Lemma 1. F(Z) as defined by (27) satisfies
F{Z) = 0(1 Z r1/2 cosh aZ), | I(Z) \ > 0

as Z —> cd .
Proof. Consider the function F^Z), analytic in the sector — 2x < arg Z < 0,

and defined by the integral

Fi(Z) = f i(t)K0[a(t - Z)] dt, | 1(Z) | > 0.

First observe that in order to assure convergence of (21)

lim,-,^ ip(t) = 0.

Define an arbitrary large constant R such that for t > R, 1 <3C R « x, 11p(t) | < 1, then

dF,(Z) | < dZ £ i(t)K0[a(t - Z)] dt + | K0[a(R - Z)]\, \I(Z)\>0.
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Since K0(Z) = 0(| Z |~1/2 exp —Z) at infinity, we find

F,(Z) = 0(| Z T1/2 exp aZ), \ 1(Z) | > 0, as Z -> a,.

Observing that F(Z) as defined by (27) is given by

F(Z) = F,(Z) + F1(-Z), (37)

we have proven Lemma 1.

Lemma 2. The most general solution for a sectionally holomorphic function F(Z)
as defined by (27), satisfying the boundary conditions (35), (36) and Lemma 1 is of
the form

F(Z) = [A(Z) exp (—aZ) — A(—Z) exp (+aZ)]/Z, (38)

where A (Z) is itself sectionally holomorphic, of order

A(Z) = 0(1 Z n
at infinity and satisfying the boundary conditions

A+(x) - A~(x) = 0, 0 < | x | < 1, (39)

A+(x) + A~(x) = |°' - co < x < -1, (4Q)

[—2ttxG'(x) exp (ax), 1 < x < °° .

Proof. Let F(Z) be written in the form

F(Z) = [A(Z) exp (-aZ) + B(Z) exp (+aZ)]/Z,

where A(Z), B(Z) are taken as arbitrary functions of Z. Equation (37) implies that

B(Z) = -A(-Z)

and that A(Z), B(Z) are analytic for | I(Z) \ > 0. It follows from Lemma 1 that

A{Z) = 0(| Z |1/2) as | Z | —» co (41)

To complete the proof, we show that A(Z) satisfies the boundary conditions (39),
(40). In view of (35), we have for x > 1,

F*(x) + F~(x) = [{4+(a;) + A~(x)} exp ( — ax) — \A+(—x) + A~(—x)} exp (ax)]/x

= -2ttG'(x).

Upon examination of (26) it is observed that

G'(x) = 0(| x |~I/2 exp (—a \ x |)), as | a: | —> oo. (42)

This implies that A + (—x) + A~( — x) = 0, thereby verifying (40). Since F(Z) is con-
tinuous for | Z | <1

A*(x) — A~(x) = 0, 0 < | x | < 1,

which establishes the validity of Lemma 2.
We have therefore reduced the problem to that of finding a sectionally holomorphic
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function A(Z) of order 0(| Z |1/2) at infinity and satisfying the boundary conditions
(39), (40). The solution for A (Z) proceeds as follows. Let

A(Z) = A0(Z)A1(Z), (43)

where A0(Z) satisfies the homogeneous problem, obtained from (39), (40) by setting
G'(x) = 0, i.e., we choose A 0(Z) to be a sectionally holomorphic function, of finite degree
at infinity, and satisfying

loW + A~o(x) = 0, 1 < I x I < oo, (44)

A+0(x) - A~0ix) = 0, 0 < | x | < 1. (45)

A particular solution of (44), (45) is (1 — Z2)~1'2. The general solution is of the form

A0(Z) = P0(Z)(l — Z2)~1/2, —it < arg (1 — Z) < %, —ir < arg (1 + Z) < t, (46)

where P0(Z) is an arbitrary function of finite degree at infinity. It will now be shown
that P0(Z) is in fact, an arbitrary polynomial. To show this, let A0(Z) be any solution,
and X(Z) be a particular solution vanishing nowhere in the finite part of the plane
including the real axis. Then

A+0(x) + A~0(x) — 0, X+(x) + X~(x) = 0, 1 < | x | < co ,

and hence, since X+(x) ^ 0, X~(x) ^ 0,

A+0(x)/X+(x) = A-0(x)/X~(x)

Consequently, the function A0(Z)/X(Z) is holomorphic in the whole plane. Since it
has a finite degree at infinity it is a polynomial and the statement is proved.

Consequently Ai(Z) satisfies

A\(x) - A'^x) = 1~2txG'exP (flx)/A+0(x), 1 < x < oo , ^
[o, 0 < | a; | < 1, — co < x < — 1,

where

A+0(x) = +iP0(x)(x2 - 1 )"I/2, 1 < X < oo. (48)

The most general solution of (47) is of the form

MZ) = £ tx^{x){^9-az) dx + Pt{z)' (49)

where Pi(Z) is an arbitrary polynomial. Substituting (46), (48) and (49) into (43) yields
the most general solution for A(Z),

A(7\ = fo(Z) f° X(x2 - 1 y/2G'(x) exp (ax) P0(Z)P1(Z) , ,
(Z) (1 - Z2)1/2 Jl P0(x)(x - Z) (1 - Z2)l/2 (50)

Lemma 3. The polynomial P0(Z) must be of second degree, i.e., of the form

P0(Z) = C(Z2 + aZ + i3), (51)

where a, /3 and C are arbitrary constants, C ^ 0. The polynomial Pi(Z) is identically
zero.
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Proof. Let n and m denote the respective orders of P0(Z) and P\(Z) at infinity,
i.e., Po(Z) = 0(Z"), Pi(Z) = 0(Zm) as Z —* co. Equation (50) implies that

A(Z) | < ""I, . R x(x2 - 1 )U2G'(x) exp (ax)
1 P0(x)(x - Z)

+ -rJr

n_! . x(x - l)1 G'(x) exp (ax)cz 1 P,(* - Z) dx + Po(Z)P1(Z)
(i _ zy2

where is an arbitrary large constant such that 1 <3C R < 00. Then for x > R

Cx(x — l)'/2C(a;) exp (ax)
Po(x)

This follows directly from the asymptotic behavior of G'(x) as given by (42). Hence

< | C,x3

A(Z) \ < C0 \Z |-2 +
3/2—n

°'z~'L —zdi + I C2Z"+m~1 I as Z -> 00 .

In order to secure convergence, n > 2. Thus

4(Z) I < C„ I 2 I"-2 + | C, /" ~ dx - £ f
Jr X [X X

cfa; + I C2Z•n+m—1

n > 2, as Z

A(Z) | < C„ | Z |-2 -t C,\Z t - 2 tan-1 (R/Z),/2 - £
"~2 (Z/R)m~in

m —
+ | C2Zn+m'1

Hence

4(Z) = 0(Zn~2) + 0(Z1/2) + OCZT"—'), n > 2 as Z -> ®.

Since n < 2 from Lemma 2, P0(Z) must be of second degree at infinity, and Pi(Z) = 0.
We have therefore shown F(Z) is given by

f" x(x2 - l)1/2C(z) f>„(Z) exp a(x - Z) _ P0(-Z) exp o(g + Z)~|
J, P0(*) L s-Z z + Z \dx

—x < arg (1 + Z) < 7r, —7r < arg (1 — Z) < ir, (52)

where P0(Z) is an arbitrary polynomial of the form stated in Lemma 3. Sufficient con-
ditions for determining F(Z) uniquely is considered in Theorem 1.

Theorem 1. Let ^(x) be Holder continuous in the interval 0 < x < <*> and q(x)
Holder continuous in the closed interval 0 < x < 1. Then P0(Z) is given by P0(Z) =
C(Z2 — 1), where C is an arbitrary nonvanishing constant, <p(u) is uniquely determined

<p(u) = - — a ^— [ G'(x) cos (ux) dx
IT It J o

2 (u' + ay" f (1 - x')'" , , r" 1G'(1) J e"'-' «*"*"
7 u J, x—™MJ, (? - 1)"* fc^j " (TTi)dt dx,
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and

G'(t) =lft[ q(s){K0(a | s - t |) - K0(a | s + t |)} ds.

Prooj. Consider the behavior of the function F(Z) as Z approaches the branch
point Z = 1. Let It denote a real positive constant. If R is chosen sufficiently close to
unity, then for R > \ Z \, F(Z) as defined by (27) behaves as

F(Z) = J'* i(t) log (t - Z)dt + 0(1) as Z-»l. (53)

The integral in (53) is evaluated as

-j-z }"m !og« - Z) it - /* »">: *m n + mJ'jSz
= -hi) log (i - z) + 0(1)

in view of the assumed Holder continuity of Hence

F{Z) = -^(1) log (1 - Z) + 0(1) as Z -» 1.

Now ip(x) is related to q(x) by the formula

2 r cm
q(x) = - sin (ux) / ^(<) sin (u<) dt du

TT Jo Jo

obtained by substituting (21) into (15). Since ip(t) is Holder continuous and belongs to
1/(0, co)t \p(x) = q(x) in the closed interval 0 < x < 1. Therefore

F(Z) = -?(1) log (1 - Z) + 0(1) as Z -> 1. (54)
It will now be shown that (54) is sufficient for determining Po(Z) uniquely. F(Z)

as given by (52) may be shown to behave as

Po(Z) f" (x2 — l)1/2G'(a;) , P0(—Z) __ „ , /rr/xF(Z) ~ (1 - Z2)1/5 J, P„(®)(® - Z) ^ + (1 - Z2)I/2 0(1) + 0(1) 88 z 1' (55}

Using the fact that G'(x) = §(1) log (a; — 1) + 0(1) as x —■> 1, we find

F{Z) = 0(?(1) log (1 - Z)) + 0( + o((1Pl(^i/-2) + 0(1) as Z —> 1 (55")

In order to satisfy (54) it is necessary that

Po(Z) , P.(-Z)
(i - zy/2 and (i - z2)i/2

be bounded at Z = 1. The only polynomial of second degree satisfying this condition
is P0(Z) = C(Z2 — 1), where C is an arbitrary constant, C ^ 0. Therefore, F(Z) is
uniquely determined

n _ z2)1F{Z) = -U /*" xG'(x) /exp a(x — Z) exp a(x + Z)\ ,
I *-Z J '

—7r < arg (1 — Z) < tt, —7r < arg (1 + Z) < x. (56)
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It is now a simple matter to find <p(u). We have shown that (16) can be written in the
form given by (24), viz.,

f sm2g, du = - f m\K0(a \t - x [) - K0(a \ t + x \)} dt. (57)
Jo \u a ) t jo

Using (34) and (26),

+ (58)

Now F+(x) + F~ (x) can be found from (56); thus

d r y(n) sin ru
eta Jo 2\ 1/2(w2 + a2)

1 (1 - z2)1/2 r tG'(t) [e°u~x) „ ,
G(x) 7T X J, (t2 - 1)1/2 L< - * t + *J dt' ° < * < 1 (59)

.0, 1 < X < co .

The Fourier cosine transform of (59) yields the result sought

I (m2 = LG'^cos ^rfa:
1 f'(l - x2),/2 . s r tG'(t) jeeaU+x)\

-;i, »—cos^l (?-iyr-\Tzr-x-T+-x)dtdx (60)

which proves Theorem 1.
Remark. Equation (60) is uniformly valid for 0 < a < | arg a | < x/2. In

fact, for the special case a = 0, the solution for <p (60) reduces to

<p(u) = — f tJi(ut) f q(rt)r( 1 — r2)~1/2 dr dt (61)
7T Jo JO

(isee Appendix). This is Titchmarsh's formula for the solution of the equations

[ ya1(y)JXxy) dy = gfr), o < x < 1, (62)
Jo

[ f(y)'h(xy) dy — 0, 1 < X < °° (63)
J 0

for the case a = 1, v = §, where f(y) = y~1/2 <p(y)', g(x) = (2/wx)1/2 q(x).
4. An application to a diffraction problem. As an example of these results, consider

the problem of the diffraction of an 2?-polarized electromagnetic wave by an infinite
conducting plane with a slit of arbitrary width. Let the slit lie in the y = 0 plane of a
right handed Cartesian coordinate system and be bounded by the lines x = ±b. The
remaining portion of the plane, viz., y = 0, | x \ > b, consists of a perfectly conducting
plate of zero thickness. We consider the case in which the fields are independent of the
z coordinate and the electric field vector is parallel to the z-axis, i.e., Hz = Ex = Ev = 0.
Maxwell's equations reduce to

dE, . dE, . dHv dHx . ,,
_ l[LWtt x . XfLLtill y . _ ZCCtilli zdy dx dx dy
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where e is the dielectric constant and /i is the permeability. The electric field satisfies
the wave equation

+ k2<p = 0; k2 = e/xco2 (64)
ox ay

Denote the total field in the presence of the slit by

<p,(x, y) = Vi(x, y) + <p(x, y), (65)

where (p(x, y) is the sum of the reflected and diffracted waves. In the absence of the
conducting plate, the incident wave is given by

V) — exp (—ikx cos 6 — iky sin 8), 0 < 8 < ir (66)

where 6 is the angle between the negative z-axis and the direction of propagation of the
incident wave.

The function <p(x, y) is chosen to satisfy the radiation-condition at infinity and the
boundary condition <pt = 0 on the perfectly conducting plate but not in the slit. Currents
are induced in the plate in the z direction, i.e.,

(f) - if1) 1-_\dy /o+ \dy /o_J
L = (HI)0+ — (ff*)0- = (W) 1

Because no currents can flow in the slit, we have

| x | < b. (67)dyA = / dyA
dy /0+ \dy /o-

Using the condition that the electric field must be continuous across 2/ = 0, 0 < | x | < >
the total field <pt can be represented in the form

y) = J U(p) exp [+7y - ipx] dp, y < 0

= J U(p) exp [-7?/ - ipx] dp + <p,(x, y) - <pt{x, -y), y > 0 (68)

where 7 = (p2 — 7c2)1/2 and <Pi(x, y) is given by (66).
Since <p, = 0 on y = 0, b < | x | < ®,we find that the function U(p) must satisfy

J U(p) exp (—ipx) dp = 0, b < | x | < «> (69)

and by (67)

J yU(p) exp (—ipx) dp = —ik sin 6 exp (—ikx cos 6), 0 < | x \ < b. (70).

Equations (69), (70) represent a set of dual integral equations for the unknown function
U(p). These equations are also applicable to the problem of an //-polarized electro-
magnetic wave incident on a conducting strip of arbitrary width, as well as to the
analogous acoustic problems.

These equations can be reduced to two independent sets of dual integral equations
having sine and cosine kernels and of a form suitable for solution. Let

U(p) = U.(p) + U0(p), (71)
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where

u.(p) = h[U(v) + U(-p)], (72) J7o(p) = h[U(p) - U(-p)]. (73)
Then (69), (70) reduce to

— ilc
/ U0(j>)(p2 — k2)1/2 sin pre c£p = ——— sin 0 sin (fcr cos 8), 0 < | x | < b, (74)

Jo ^

f U0(p) sin px dp = 0, 6 < | x \ < °° , (75)
Jo

J U,(p)(p2 — fc2)1/2 cos pa; c?p = -^sin 6 cos (&x cos 6), 0 < | x | < b, (76)

/ Ue(jo) cospx dp = 0, b < | x | < oo . (77)
Jo

With
w = p6, x' = x/b, e = kb,

*.(«) = kU.(u/b)(u2 - e2)1/2, <Po(u) = kU0(u/b)(u2 - €2)1/2,

Equations (74), (75), (76), (77) become
f" . — ie/ (Po(m) sin x'w du — —— sin 6 sin (ex' cos 6), 0 < | x' | < 1, (78)

Jo ^

r <Po{u) sin x'u , _
J ,2   e2)1/2 ^ — I ̂  I 00' C79)

f" — z'e2J <pe(u) cos x'u du = —— sin 6 cos (ex' cos 0), 0 < | x' \ < 1, (80)

(8i)

This problem was considered for the case of a narrow slit, i.e., e <JC 1 and 6 = x/2
by Groschwitz and Honl [4] whose work was later criticized by Tranter [5], Muller and
Westpfahl [6]. The complete solution of these equations can be determined in closed
form for slits of arbitrary width by applying the results of the previous section with
a — ee~"/2. The solution of dual integral equations (78), (79) is given by

2(ifT—t2)172 = = fg G'0(x) cos ux dx (82)

_ 1 f a - *■)'-" cosm r iml, |"«p i-'<c - *>i_ «*p [-«' + *>il dtdXf
t J0 x Ji (t — 1) L t — x t + x J

where

G'0(t) = Je2sin 0^ J sin (ex cos 0){Hon[e I % ~ t |] — //"'[e | x + t |]} dx (83)

and H«\Z) is the Bessel function of the third kind,

H«\Z) = - K0(Ze~iT/2).
in
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The solution of the dual integral equations (80), (81) proceeds as follows. If (80) is
integrated from 0 to r and (81) is integrated from 1 to r, we obtain

f <pju) S'n TU du = —~taji 6 sin (er cos 6), 0 < r < 1, (84)
Jo U ^

lo du = C' = 0, 1 < r < co. (85)

The integration constant C' in (85) must be zero. For if we assume <p.(u) u~\u2 — e2)~1/2:
is Lebesgue integrable, L(0, <») then the integral in (85) must tend to zero as r —*
Using (60) we find

<Pe(u) = JcUe(u/b) = f G[(x) cos ux dx
A Jo2 («' - If"

_ i f' (i - »■)■" „ r -Jgiu _ exp [-W + »)k dt dXr
7r J q %c J i \v / \ t I oc J

(86)
where

G'e(t) = ietan 0~ J sin (ex cos 0){.ffoU[e | x — t |] — | x + t |)} dx. (87)

5. Appendix. We shall here show that our solution reduces to that given by Titch-
marsh [1] for the special case o = 0. The dual integral equations (15), (16) become

/ p(u) sin xu du = q(x), 0 < x < 1, (Al)
Jo

/ u~'(p(u) sin xu du = 0, 1 < x < <». (A2)
Jo

The solution to the dual integral equations (15), (16) given by (60) is uniformly valid
for 0 < a < co, | arg a \ < tt/2. In fact, for the case a = 0, (60) reduces to

2 r1<p(u) = — / G'(x) cos ux dx
if Jo

- 4 f' (1 - X2)1/2 cos ux f i{f - 1 r1/s 2 dt dx, (A3)
IT J 0 J1 t X

where G'(t) is obtained from (26) with a = 0,

G'(t) = - f dr. (A4)t Jo r — t

Substituting (A4) into (A3) and interchanging orders of integration we obtain

<p(u) = ~2 [ cos ux [ (ir dx
tv Jo Jo r — x

~ ? L ^ X^'/2 C°S UX lo rq^ h (t2 — x2)(r^~^7j dr dX'
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The last integral is easily evaluated and (A5) reduces to

v{u) = 4 I (1 - *T2 cos ux f0 p _ ^ dr (A6)

•which can be manipulated into the form

*(«) = 4 [' x(l - x2)~1/2 Sjn^ f1 q'(r) dr dx. (A7)
ir Jo u Jo x — r

Next we substitute

sin xu
u

into (A7) and interchange orders of integration:

f tJo(ut)(x2 - t2)~i/2 dt (A8)
Jo

A r1 r1 r1 rf1 — r2)'1/2(r2 — /2r1/2
?(u) =W (1 - r2)1 q'(r) tJ0(ut) ^~^ dr. (A9)

x Jo Jo Jt x — r

IHence

¥>(m) = - f q'ir) f ■, J^0^USi/2 dt dr. (A10)t Jo Jr (t — r )

If the order of integration in (A10) be changed, this can be written as

<p{u) = ~ f1 Jo{ut) j- [' q'(r){t2 - r2)I/2 dr dt (All)
7T Jo Clt Jq

If we integrate the second integral by parts noting that g(0) = 0 we obtain

*.) = I [ J.M | * i«. (A12)
Integrating the first integral by parts then gives

v(u) = — [' tJ^ut) [' r(l - r2)'1/2q(rt) cfr + - /„(u) [' tq(t)( 1 - <2)"1/2 (A13)
IT J o J 0 7T J o

which agrees identically with Titchmarsh's result provided

f <(1 - t2)~1/2q(t) dt = 0. (A 14)
Jo

To show that (A14) holds true, multiply (Al) by x{\ — a;2)~1/2 and integrate from
0 to 1. If we change orders of integration in the resulting double integral and use the
formula

we obtain

f1 a; sin xu , , r N /AirN
J Q   X2)1/2 ~ ^ (^15)

J xq(x)( 1 — £2)_1/2 dx = ^ J ^(M)<^i(M) (A16)

The right hand side of (A16) can be determined from (A2) by assuming one sided
continuity at x = 1 of the integral in (A2), 1 < x < °°. To show this, multiply (A2)
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by (x2 — r2'fU2 and integrate from 0 to . If we interchange the orders of integration
and use

£ (x2 — r2)'1/2 sin xu dx = | J0(ru) (A17)1

we find

i
-~ J0(ru) du = 0, 1 < r < oo. (A18).>

Differentiation then yields

[ (piujJ^ru) du = 0, 1 < r < oo. (A19);
Jo

Thus if the integral appearing in (A2) is continuous 1 < x < °°, then

[ rq(r)(r2 — t2)~1/2 dr = ~ f ^(w),/j(m) du = 0. (A20)1
J0 ^ Jo
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