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AN APPLICATION OF THE DYNAMIC BETTI-RAYLEIGH RECIPROCAL
THEOREM TO MOVING-POINT LOADS IN ELASTIC MEDIA*

BY

R. G. PAYTON**
Courant Institute of Mathematical Sciences, New York University

Abstract. Two problems connected with the transient motion of an elastic body
acted upon by a moving-point force are solved by an application of the dynamic Betti-
Rayleigh reciprocal theorem. This theorem, which is the analogue of Green's theorem
for the scalar wave equation, permits the solution to be written as a single expression,
irrespective of the value of the (constant) moving-force velocity v. In particular, the
displacement field in an infinite elastic body, due to a transient-point body force moving
in a straight line, is given in a simple form. Next the surface motion of an elastic half-
space acted upon by a transient pressure spot moving in a straight line is analyzed for a
material for which Poisson's ratio is one-fourth. The normal displacement is expressed
in a simple manner, but the tangential displacement is quite complicated and is not
fully expressible in terms of elementary functions. Singularities of the displacement
fields are identified and discussed.

1. Introduction. In recent years, several authors have considered the motion of an
elastic solid resulting from a moving load. In most instances, the problems encountered
in these studies have been treated by the use of integral transforms, necessitating the
separate consideration of the various forms of solutions that arise when the velocity of
the moving load v is greater or less than one of the characteristic velocities of the medium.
In this paper, a dynamic version of the reciprocal theorem of Betti and Rayleigh [I]f
is employed to treat the problem of moving loads in a general manner for all constant
values of v in the range 0 < v < + co.

Two specific problems are considered in detail. Firstly, the motion of an infinite
elastic body resulting from a moving-point force acting in a direction along the line of
motion is presented in Sect. 3. Secondly, the surface motion of an elastic half-space
caused by a moving normal-point surface load, is determined in Sect. 4. In both cases,,
the loads are suddenly applied at the origin at the time t = 0, and then move rectilinearly
with a constant velocity v. These problems were solved without any particular applica-
tion in mind; the half-space problem may be generated by a cyclone or (using super-
position) a rolling freight train.

Eason, Fulton, and Sneddon [2] have considered the moving load in an infinite elastic-
medium for the case of "uniform motion." Thus, if the load moves in the direction x
with velocity v, the Galilean transformation % = x — vt, y = y,z — z reduces the number
of independent variables from four to three. Mandel and Avramesco [3] use the same
method for the half-space problem. These uniform-motion solutions necessarily neglect
the transient phase of motion and are only valid long after the load has been applied.
The integral-transform methods used by the aforementioned authors will certainly
work for the moving load in an infinite elastic body, but how to apply transforms in
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the (transient) half-space problem is not clear on account of the asymmetry introduced
by the moving load.

Considerably more work has been done on moving-line loads. In particular, Ang [4]
treats the transient half-space problem and discusses the uniform-motion version of this
problem. Papadopoulos has also worked on related moving-load problems (private
communication).

The work presented here was conducted while the author was a temporary member
of the Courant Institute of Mathematical Sciences, New York University, and was sup-
ported by the National Science Foundation and also by funds contributed by industrial
firms to New York University. The author takes pleasure in recording his thanks to
IF. Karal and, in particular, to J. Keller who suggested the mode of attack.

2. The dynamic Betti-Rayleigh theorem. For a given linear, homogeneous, iso-
tropic elastic body with volume V, surface S, and prescribed surface traction T(x8, t),
hody force F(x, t), initial displacement u°(x), and initial velocity u°(x), there will be a
displacement field u(x, t) uniquely determined by a solution of the Navier equation,

d V2 u + (c? - cl) V (V-u) = U(1 - - F.
P

Here cx and c2 are the speeds of propagation of dilatational and equivoluminal waves.
•Consider now another displacement field u'(x, t), corresponding to a primed set of forces
:and initial conditions which also satisfy the equations of elasticity. The dynamic Betti-
Rayleigh theorem then states that,

f f F(x, r)-u'(x, t — t) dV dr + [ pu°(x)-u'(x, t) dV
Jo J V J V

+ [ pu°(x)-u5(x, t) dV + [ [ T(x", r)-u'(x8, t - r) dSdr
J V Jo J s

= f f F'(x, t)-u(x, t — t) dV dr + [ pu^°(x)-u(x, t) dV
Jo J V J V

+ f Pu'°(x)-ut(x, t) dV + [' [ T'(x', t)-u(x", t — r) dS dr. (1)
Jv Jo J s

Equation (1) can readily be established by first taking the Laplace transform of the
equations of elasticity, applying the static Betti-Rayleigh theorem, and then using the
convolution theorem.

DiMaggio and Bleich [5] have used the dynamic reciprocity theorem to determine
the vertical displacement in the interior of an elastic half-space produced by a concen-
trated vertical surface force. These authors also mention earlier references to the theorem.
Knopoff and Gangi [6] give experimental evidence supporting the theorem and also
discuss its derivation. Neither of these references treat displacement fields with non-
vanishing initial values. Morse and Feshbach [7] establish a vector Green's theorem
which should be formally equivalent to (1), but the expressions involved are in a form
somewhat unfamiliar to the elastician.

In applying Eq. (1) to the problems at hand, the primed forces will be chosen so as
to act at a single point x0, in V or on S. Consequently, u'(x, x0 , t) will play a role anal-
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ogous to a Green's function for the scalar wave equation.* It should be stated that
Eq. (1) remains valid when the surface displacements are prescribed on S instead of
the surface tractions.

3. A moving-point force acting in a direction parallel to its line of motion in an
infinite elastic body. Before attacking the problem of a moving-point force acting in a
direction parallel to its line of motion in an infinite elastic body, the preliminary problem
of the displacement field generated by a stationary (but impulsive) point force must
be solved. Upon using this solution and the dynamic Betti-Rayleigh theorem, the
solution for the moving force will follow directly by integration. This will be made
clear below.

Displacement field produced by a stationary-point force. The preliminary problem
to be investigated is,

cI V2 u' + (c\ - cl) V (V-u') = u{, - ax5(x - x0)8(t) . (2)

with the initial conditions u'(x, x0, 0) = uj(x, x0, 0) = 0 in the infinite domain — oo < x,
y, z < + °o. Here, ax denotes a unit vector pointing in the positive x direction. The
displacement vector u'(x, x0 , t) determined by Eq. (2) is the displacement at a point x
and time t due to a point impulse acting in the x direction at point x0. This solution can
be obtained in a straightforward way. Consequently only the sequence of steps involved,
will be listed here. First, move the origin of the x coordinate system so that it coincides
with point x0. Then change to cylindrical polar coordinates with r = (if -(- z2)1/2. Next,
decompose the nonhomogeneous part of Eq. (2) so that

a, S(x)d(t) = (V4>o + V X A„) S(t).r

This decomposition can always be accomplished, e.g., by the formulas given in Sneddon
and Berry [8]. The displacement vector u' is next written in the form u' = V<£ + V X A
where, because of symmetry, A = a0A, a„ being a unit vector in the direction of increas-
ing d. Equation (2) then separates into two scalar equations which can best be handled
by applying Laplace and Hankel transforms. The resulting solution is (after moving
the coordinate system back to its initial origin),

M(1)'(x, x„ , t) = ± ^ G(x, x0,R0,t), v(1)'(x, x0 , t) — {y - ?y^(f ~ Xo)t F(R0 , t),

ww\x, x0 , t) = ~ {Z ~ 2o)^ ~ Xo)t F(R0 , t), (3)

„ ,t) = \~H(t- Ro/Cl) + -«(*- Ro/ci) -~H(t - R0/c2) - - S(t- R0/c2) ,
L/tO C1 ^0 C2 J

, , R0 , 0 = [{3(xpL2 Xo)2 - i}^ m - Ro/Cl) + ^ - Ro/Ci)

where

F(R

G(x

3(x x£ _ J. H{t _ Rq/c2) _ J*"? - i| I 8(t - R0/c2)
2

Rl ~ R0"K" I Rl
  Ro = l(x - x0)2 + (y- yoy + (z - Zo)2]w2.

*The notation used here is that the vector u' with Cartesian components u', v', and w' is a function
of the independent variables x, y, z, and I and also depends on the parameters xo, Vo, and 2o.
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Here H stands for the Heaviside step function and 5 for the Dirac delta function.
It should be noted that u!1)' (x, x0, t) = u(1)' (x0, x, t), i.e., reciprocity holds in an infinite
medium as expected. In Eq. (3), the superscript (1) is to denote the fact that the dis-
placements are due to a point impulse acting in the x direction. The corresponding
solutions u(2)'(x, x0, t) and u(3,'(x, x0 , t) when the point impulse acts in the y and z di-
rections respectively will not be written out explicitly since these expressions follow
directly from Eq. (3) by simply relabeling the axes.

Displacement field produced by a moving-point force. Let a point force be sud-
denly applied at the origin at time t = 0 and then maintained at a constant velocity v
along the positive z axis. No restriction is placed on v other than v > 0. Of course, the
expressions for the displacements will differ according to the relation of v to c( and c2 .
The problem can now be concisely written as,

clV2u + (c\ - 4)V(V-u) = u, i - azQ08(x)8(y)8(z - vt) (4)

with the initial conditions u(x, 0) = u4(x, 0) = 0. Here, Q0 is a constant measuring
the strength of the moving force. Equations (4) will now be solved by applying the dy-
namic Betti-Rayleigh theorem, Eq. (1). Since the initial conditions on u are zero, the
initial conditions for the u' displacements are chosen to be zero. Also, because the domain
is infinite, the integrals containing the surface traction terms are omitted. Equation (1)
then reduces as follows,

t — r) dVo dr (5)f f F(x0 , t)-u'(x0 , X, t - r) dVo dr = f f F'(x0 , X, r)-u(x0 ,
Jo JVo Jo J Vo

where the body forces F (x, t) and F' (x, t) are given by

F(x, t) = a,pQ08(x)8(y)8(z - vt),
(6)

F'(x, x0 , t) = azp8(x - x0)S(y - y0)8(z - z0)8(t).

Substituting (6) into (5) and performing the volume integration, one finds

u= Q0w(1)'(0, 0, vt; x, y, z; t — r) dr.
J 0

By employing F' = a„p 5(x — x0) 8{t) and F' = azp Six — x0) S(t), the v and w com-
ponents of the displacement vector satisfying Eq. (4) are similarly determined. With
the use of (3), the three displacements are found as

u(x, y, Z,t) = fQ X{z ~ T) F[R(r), t - r] dr,

v(x, y, z,t)=^ l' y(z ~ t) F[R{t), t - r] dr, (7)

w(x, y,z, t) = ~ G[z, VT, R(r), t — r] dr

with
R(r) = [x2 + y2 + (z - vr)2]1/2.

Substitution of the expressions for F[R(r), t — r\ and G[z, vr, R(r), t — Vfinto Eq. (7)
leads to integrals of the form
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[ dr and f /i(t)5[/(t)] dr,
J Q Jo

where /(r) = t — r — R(t)/c, the symbol c playing the role of either cx or c2 . In both of
these integrals the integrations are elementary; however care must be exercised in the
examination of j(j) since its zeros determine the values of both integrals. It is shown in
the appendix that /(r) may have zero, one, or two roots in the range 0 < t < t, depend-
ing upon the relative values of x, y, z, t, c and v. The final displacements (in polar cylindri-
cal coordinates (r, 6, z)) are,

ur

- +

8{CX)

]<S(C2),

U, = 0, (8)

Qo
4tTv'[ifc - fi'+V(z

- ~ B,+^-(-rf)>(» - V2/ct)

Rc
S(C2).

These displacements constitute the complete solution of the equation of linear
elasticity for a suddenly applied point force, acting along the z axis whose motion is
then maintained at a constant velocity v along the z axis. Some explanations of the
symbols used in Eq. (8) are necessary. For example, r = {x2 + y2)1/2 > 0 is the polar
coordinate radius measured from the z axis, while R = (:c2 + y1 + z2)1/2 > 0 is the
spherical coordinate radius measured from the origin. The quantity Ra (where a may be,
cl or c2) is defined by Ra = [{z — vt)2 + (1 — v2/a)y2]1/2. The term H(t — R/c{) is the
Heaviside unit step function of argument t — R/c{ and signifies that the bracket which it
multiplies is included in the solution, if R is inside the sphere of radius c,t, and excluded
from the solution, if R is outside this sphere. The term <S(C<) is an abbreviation for a
function which has the value 1 inside the conical region

R < c{t, t — z/v — [(v/Ci)2 — 1 f/2r/v > 0, and z > r[(v/c,)2 — 1]~1/2,

and zero outside this region. For example when c2 < v < ct , the function S(C2) is 1
inside the conical region ABC (Fig. 1) and 0 outside this region. Of course, a conical
wave front is present only if the velocity of the moving force is greater than that of the
shear-wave velocity c2. If v > cx, then there will be two propagating conical wave fronts.
These conical fronts are similar to the familiar Mach cones encountered in high-speed
aerodynamics.

Diagrams of the wave-front patterns are shown in Fig. 1 for the three cases v < c2 ,
c2 < v < ct , and v > cy . The special cases of v equal to cx or c2 are also included in the
solution given by (8). The displacements have singularities and become unbounded
when Rci = 0 for i = 1, 2. If 0 < v < c,- , this singularity will be at the point z = vt,
r — 0; that is, at the moving force singularity. However if v > c» , then Rci = 0 on the
cone Ci , so that the displacements are unbounded everywhere on the conical surfaces.

The terms [r2(z — vt) + z3]/rR3 and [R2 + z — z(z — vt)]/R3 are, in effect, transient
terms which disappear when a solution valid for uniform motion is obtained. The uniform-
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R = c2t.

Fig. 1. Wave-front patterns at time t for a moving-point force in an infinite elastic medium
(c = velocity of moving point force, C2 = velocity of shear waves,

and Ci = velocity of dilatational waves).

motion solution corresponds to applying the point force at time t = — <» and then
considering the resulting displacement field at a much later time. This can be obtained
from Eq. (8) by replacing z by z + vt' and t by t + t' and then requiring that £' —► + «>.
The solution then agrees with that of Eason, Fulton, and Sneddon [2],

When the moving-point force vector makes an arbitrary (but constant) angle with
the fine of motion, its effect can be handled by considering separately the displacements
from a moving-point force acting in the same direction as the motion and the displace-
ments resulting from a moving source which acts normal to its line of motion. Eason,
Fulton, and Sneddon [2] consider both cases for uniform motion. However, since nothing
new is involved in these cases, a more interesting problem will next be considered.

4. Surface motion of an elastic half-space produced by a moving pressure spot. In
Sect. 3, the response of an infinite elastic space to a moving-point force was determined.
The solution to this problem was relatively easy since no boundaries were present. This
suggests that the problem with the next order of difficulty will be the response of an
elastic half-space to a moving-point force below the surface. Unfortunately, an explicit
solution for the stationary buried point-source problem in a half-space cannot be ob-
tained in terms of known functions [9]. However, Pekeris [10] has given an elegant
solution for the surface response of an elastic half-space due to a suddenly applied (and
stationary) point load. For this reason, only the surface motion of an elastic half-space
excited by a moving pressure spot on the surface will be considered herein. As will be
made clear below, even this solution becomes rather involved for the inplane displace-
ments.

Surface-displacement field produced by a stationary surface impulse. Before considering
the problem posed by the moving pressure spot, the appropriate solution for a stationary
load must be determined. In particular, the normal component of the surface displace-
ment vector for a surface traction vector which acts normal to the (otherwise) stress-
free surface of the elastic half-space is needed. The normal surface displacement for the
moving pressure spot can then be found from (1). To find the tangential components
of the surface displacement vector corresponding to a moving pressure spot, the normal
surface displacements resulting from a stationary surface traction vector acting in both
the x and y directions (where the half-space is represented by—oo < x, y < + <*> and
z < 0) are needed. These, however, can be determined from the tangential displacements
due to a normal load by the application of Eq. (1). For the stationary surface impulse,
the preliminary problem is,

cJW + (cl - eJ)V(V-u') = uj, (9)
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for the half-space z < 0 with the boundary conditions T = a2 S(x" — x'0) S(t) and zero
initial conditions on the displacements and velocities. Pekeris [10] has considered this
problem with the exception that his load is applied at the origin (x = y = 0) and has a
step-function time dependence, whereas a delta function for the time part of the surface
load is used here. Hence, after translating the origin of the coordinate system so as to
coincide with the load, and differentiating the displacements once with respect to the time
variable, the solution of Eq. (9) follows from Pekeris' results.

Let the normal component of the surface displacement vector which satisfies Eq. (9)
for a surface traction vector of magnitude o(x* — x"0) S(t) acting in the direction x'
(where x1 = x etc.) be denoted by w',y. Then,

w(1)'(x',*S , t) = A(r0 , t),
' 0

wm\x', x'o , t) = -y y° A(r0 , t),
'0

Ww'(x' y' t) - ——If" 31/2C2(  k,c2t
W (X , Xo , t) - 16^|_ {(?f _ r2/4)3/2 + (c2/2 - rldT2

+ (tVo "-iff* H(y r!) (yVo -elf)"2 S(yr° ~ cj

+ I /_2 j2 U ~2 / A\ 3/2 ~ TXa 1 2_2a2\3j2 + ~0 2 ? 2,2,3/2 H^y ~

S(yr0 - C2<)>0 - (1Q)

3 c%t kiCzt . k^^t
ad? - r02/4)3/2 ~ jpie - ripy* ^v0 - city2

-city

where

Mn , t) = - 3~1/2)/7(l -Q- - 31/2)«S(* - 1)
nr0\_ir d£ ir

+11qbmhg -1) +;mm -1) -JyV„) m - y)
l m-y)
A fy.2 2\ 1/24 (£ - y ) ]■

IY \2 i / \2ll/2 f. 2 3 -)- 3 2 3 3r0 = [(x - x0) + (y - y0) ] , £ = —, y = —^ , P = —| ,

k, = (33/2 - 5)1/2, k2 = (33/2 + 5)1/2,

and n is one of the Lame coefficients. Pekeris expresses Bj(£) and B2(£) in terms of
elliptic integrals as follows,

Bx = -(3/y 2 {6tf(fc) - 1811(8k2, k) + (6 - 4(3)1/2)II[—(U(3)1/2 - 20)fc2, k]
O

+ (6 + 4(3)1/2)n[(12(3)1/2 + 20)A;2, k]),
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and

B&) = — 4(^2 - 9n(8; r1) - (2(3)1/2 - 3)n[-(12(3),/2 - 20), k'1]

+ (2(3)1/2 + 3)II[(12(3)1/2 + 20), fc"1]},

where

k2 = i(3f - 1).
K and II are defined by

de IN rn deK(k) ~ I (i - 0)1/2! n(n'k) ~ L(1 — k sin d)1/ ' ' Jo (1 + n sin 0)(1 — k sin 6) '

To simplify the algebra resulting from a solution of the cubic equation for the Ray-
leigh wave velocity, the usual convention of assuming a value of one-fourth for Poisson's
ratio has been followed. In this case, the dilatational wave velocity cL is (3)1/2 times that
of the shear wave velocity c2 , although for clarity both velocities have been carried
along as separate constants when possible. The numerical factors J, /32, and y2 are related
to the algebraic equation for the Rayleigh wave velocity. In fact, the Rayleigh wave
velocity is cR = c2/y.

Displacement field produced by a moving pressure spot. A normal surface traction
is suddenly applied to the elastic half-space z < 0 and thereafter maintained at a constant
velocity v along the positive rr-axis. The displacement vector u satisfies

c^V2u + (c2 - cJ)V(V-u) = u„ (11)

with the boundary conditions T = aZQ0 S (x — vt) S(y) and the initial conditions u(x, 0) =
u,(x, 0) = 0. This problem differs from the one considered in Sect. 3 in that now there
is a surface force and no (applied) body force, whereas in the above problem the reverse
was true. Application of the dynamic Betti-Rayleigh theorem, Eq. (1), along with Eqs.
(10) and (11), gives the following surface displacements resulting from the moving
pressure spot,

u — / Q0way(vT, 0; x, y; t — t) dr, v = / Q0wm'(vr, 0; x, y, t — r) dr,
Jo 0 (12)

W — f QoW(3) ("t, 0; x, y, t — r) dr.
Jo

Note that r0 is now replaced by r(t) = [{x — vt)2 + y2]I/2 in the integrals in Eq. (12).
These integrals are more complicated than those encountered in Eq. (7). Again omitting
the details of integration, the u surface displacement is

U(x, y, t) = — vy2[E{rT) - E{r[2)w{t - r~) + & vy2[-E(r[2)) + E{ri2>
XU \ C2/ 7TU

Qo (3/2)1/2 c^t
_ir/u 8 N r \Hi) - isn(?. {+

+ (6 - 4(3) )n( 2 -J + (6 + 4(3),/2)nv12(3) - 20 1\ , (a , iml/tJ12(r + 20 1
2
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+ 4;«") - KflM + [fc y _ s/cy,. [-MW
A t( 2 2 f 2 2 i 2 2 ^NJ„ , y  , i y y , i y y w+ ^3-34-7^2 + |4-T + f -1~-~2M-b2, k)

rCl I r2ca (2c2) 3 rcii cfi 3 re,/f (c2/(3) J

+ 9(l - 4-)u(8, k) + (2(3)1/2 - 3)(l - ^-)n(-12(3)1/2 + 20, k)
\ '2c a' * 'cr'

— (2(3)1/2 + 3)(l - #-)n(12(3)1/2 + 20, *)]

7 0 r2, 3 - 31/2 r2, 3 + 3l/2 r2, \

V rlc, 2 r2 + 2 r2J
Q0 C2 1 /c> /o\'/2- 22 52 — (2/3)
TTyU V TCa

1 i/o /nsl^Ca re. 1 ((3/2) 7 C^VcJv | ?/ | 4~ 1)
1 ^3/2) „ I 2/ I ((3/2 f»c*Jv 12/1-1),

-3(1 - ^-){1 - 2~3/2 tan-1 23/2} + 3 (l - ->)(1 - 2"5%

•log {(2-3/2A2 + l)/(2-3/2A:2 - 1)} + 3 +93'/2 (l - 4A
* \ rc,/)/

M- T"X ten- <2«>]]]fl(< - l) - Sai- <2/3)"((-3 5
| 3 - 31/2 d ( 3 + 31/2 r2, NL _ (3/2)1/2 c2 r,

2 rCR 2 rCl/(/1, 2 v | y

(WW.,/* 1 V I + D)
((3/2)1/2c2rjv | y \ - 1)J■ //o /o\V2

- 3(1 - V-){1 - 2_3/2 tan-1 (23/2)}
\ r2(1/

+ 3 ~3'/2 (l - 0(1 ~ 2-6/2fc2 log {(2-3% + 1)/(2~3/2k2 - 1)})

+ 3 +23'/2 (l - ¥-){l - 2"3/2/c1 tan"1 (2/c2)iJ^(A2)
' ca/p'

.2 / 2
_! Qo (X Vt)t V V/°R TT/f / \ /1Q\
+ 4m r2CB(t2 - r2/c\)1'2 H{t t/Cr)' (13)

The symbols used in the above displacement are defined by

N = x(x — vt) + y ,«> _ {xv - M) ± c,re,. ,   j\ 1 2 21/2r
f2 - c2 ' ^ " *(* + y ' * Cl(/2 - r2/c\)1/2'

r« = [(x - vt)2 + (1 - V2/a2)y2r, b2 = §££
o ' Cx c2
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The term $(A.) is a unit step function with value 1 inside the "triangular region" r > c,i,
t — x/v — ((v/Ci)2 — 1)1/2 \y\/v>0 and x > \ y\ ((v/c,)2 — 1)~1/2 and value 0 outside
this region. This triangular region is thus the surface intersection of the conical regions
discussed in Sect. 3. E{t) is the indefinite integral,

gW-/[-Ar) + ^'r)(,

where

f - l/3)'/2(l ~ v2y/'2(l2 - 2V) c2(l - r)
™ ~ " (t?2 - f2)1/2(3 - 24f2 + 56t>4 - 32*,6) v ~ r(r) '

The double integral i?(r) is cumbersome but one of the integrations can be performed.
A somewhat lengthy calculations leads to

[E(Tl) - E(t2)] = ^2 [6J(r1; r2, 0, x/2) - 18J(r>, r2, 8, x/2)

+ (6 - 4(3)1/2) {H(r2eR)(J(t!, r2, - 1^(3)1/2 + 20, 0„) + Af(r„ r2, - 12(3),/2 + 20))

+ H{-r]E){J{ru r2j - 12(3)1/2 + 20, x/2))}

+ (6 + 4(3)1/2)j(ru r2, 12(3)I/2 + 20, x/2)],

where J(rL, t2 , a, 0) and M (ti , t2 , a) (ti , r2, a and </> are generic symbols) are given by

„ ,\ _ f* j—i/2 , T1 + a/2 (3p2 ~ 1) sin2 6 Al
'' T2' ^ ~ Jo g Ll + a/2 (3px - 1) sin2 e D2J '

M(r1; r2, a) = f" (-fc)"1/2 tan"1 dO,

with

A - | {l - | (3Pi ~ 1) sin2 fljj(A2 - 1/3) sin2 6 + ^

+ 4 I1 + I(3?>i ~ 1} Sin2 0^(X2 ~ 1/3) Sin2 6 ~ 2/31

- ^ sin 6[a(a + 1)]1/2{(X2 - 1/3) sin2 6 +

•{i - | (3p. ~ 1) sin2
1/2

/\ 2 ^ \l/2(a — Pi) ,

L, = Mi/Ni,

Mt = 2(« + 1)[(X2 - 1/3) sin2 0 + |J - [(X2 - 1/3) sin2 0 + 2(a^ 2)]

1 + | (3p4 - 1) sin2 e\,
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2 V
N, = 2 sin »[-«(« + l)]1/2<j(X2 - 1/3) sin2 6 + ^

1/2

k = ^ a(a + 1) sin2 0^(X2 — 1/3) sin2 6 +

1 - | (3Vi - 1) sin2 (X2 - Piy/2r

X2 = [(x - vtf + y2] 4j,

rCR cl(t - tj)2
cos e„ = Vi = r2(T<) •

In the above expressions, in order to avoid ambiquity, (X2 — p)1/2 is to be replaced by
c2[-r(r) + v(t — t)(x — vt)/t(t)]/v | y | after differentiation with respect to X2, but
before insertion of the proper values for the generic symbols tx and r2 . Note also that
p(rLl)) = I p(ri2)) = 1, and v(0) = (c2t/r)\
The v surface displacement is given by

v(x, y, t) = ~—v(x - vt)y[E{r?) - E^mlt - r-
TVH \ C2

- ^v(x - vt)y[-E{rT) + E(riJ))]S(A2)
TfJL

+ ^i*Uf18n(V)L7r/x N r 8 { \k/ \k k)

+ (6 - 4(3)'")n(-12(3> 20 ;) + (6 + 4(3)'")n(12<3) ;,+ 20 1

- &„<* - >«»<*«" - - <>(/ - r~)

- — v(x - vt)y[E(r+)) - E(ri1,)](S(A1) + (2/3),/2
LLtm " rc, y

, 3 - 31/2 r2a , 3 + 31/2 rc
' O 2 T n 2.( 3 5c.

f _ (3/2)1/2 c, ((3/2)1/V.,A | y | + 1)\
I1 2 „ | y | l0g ((3/2!)l'Vc> | » | - 1)/

- 3(1 - v){l - 2_3/2 tan-1 23/2}.
\ ^2ca/

+ 3 ~ 31/2 (l - pp)(l ~ 2~5/% log {2-3/% + l)/(2-3/% - 1)})

+
3 + 31/2

2 (l - 4HU - 2~3/%tan1 (2k2)}

+ T^2- J.2 2 / 2x1/2 I +3 - i£"(*) — — — "5" 4 +3 — 3 2 .4ir/tf {t — r /Ci) L y y rCt { r2e, (2c2)

, 1 y2 , 1 J/2 "2 L, ,2 ,
+ 3ri:cl+3rUfe^/n(-6'K)

Qo 1 \*oxvr\ (p—j>f)Nj „ y' V
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x — vt N ns(x — vt N+ 9(-   - - n(8, k) + (2(3) - 3)     - - n(-12(3)1/2 + 20, *)
v y r2c, yl \ y rCR y/

- (2(3)'" + - ^)n(12(3)"" + 20, „)]]]*(/ - '-)

_j_ 2 & £■ -L * v± (2/3)1/2
TM V rc, y

, 3 - 31/2 3 + 31/2 (r,

rl, + 2 r2B + 2 V;
2 \Ca J

a/0'

(3/2)'/2 c2 r., ((3/2)1/ac2rc,/y | y | + 1)
2 c | 2/ I ((3/2)1/2c2rClA | y | - 1)

- 3(' - fc)" - 2"i+(> - &
-(1 - 2~W2k2 log i(2-3/X + l)/(2~3/% - 1)}) + 3 +23'/2 (i - 4y)

• {1 - 2-3/X tan"1 (2h)} "Wa2) + & H(t _ t/Cr) (14)
J rcR\l ' /Cr)

In general, the evaluation of the integrals involved in the expressions for E(t)
will almost certainly require numerical integration. However, in certain special cases,
these integrals are not needed in the displacement expressions. From Eqs. (13) and (14),
it is seen that on the line y = 0 the u and v displacements are expressible in terms of
known functions (from symmetry in this case v(x, 0, t) — 0). Also on the moving line
x = vt, the v (but not the u) displacement is free of the E(r) function. Finally the normal
surface displacement is found to be

*>(*,, y, t) = {|~-2(3)1/2 rf- - 6 > + 2 (3)1/2 ?f~
lb/i IL rCB r2e, re,n

(4 + 8(3)~1/2)1/2 N lr_ \ 1/2 N
+ rl (r° -c%ty/2H\cB V + 2(3) rlXiclt2 - rT"

(-4 + 8(3)-1/2)1/2 N 1 / _ r\ (" 1/2

r!.„ iw-rfl J + L 2(2 + 3
+ 2 - 2(2 - 3"'") -5"- + - + ?3) ~ 7T—V H(~ ~ ')

r2c, rc./f rCR {r - cRt)' \cR )

N  , ( — 4 + 8(3) 2) N_ _
0 ' rl,(4c2/2 - r2)l/2 + r2,/? (c2/2//?2 - r2)1/2

+ I —4(3)1/2 - 12 ̂  + 4(3)1/2
L rCR r2c, fc2/g_\

+ [-4(2 + 31/2) V + 4 - 4(2 - 31/2) S(A2)\-
L TCR ^*2c a ^Ca//3— 

K< - rd

(15)

Since some of the important features of the u and v displacements may still be hidden
in the E(t) integrals, the discussion will be confined to the normal displacement w. From
the previous results for the displacements produced by a moving load in an infinite
elastic space, it might be expected that w would be singular on the lines rCl = 0 and



1964] BETTI-RAYLEIGH RECIPROCAL THEOREM 311

rc, = 0. This is not the case as Eq. (15) indicates. The normal displacement does become
unbounded on the circle r = cRt as could be anticipated from the Rayleigh wave character
of Pekeris' [10] solution. The reciprocal square root singularity remains the same also.
When the moving load velocity v exceeds the Rayleigh wave velocity cB, a much stronger
singularity is introduced by the term r~l . A careful examination of Eq. (15) shows that
the w displacement is not singular everywhere on the lines r\R = 0, but only on those
rays extending back from the moving pressure spot and tangent to the Rayleigh wave-
front circle. These rays are indicated by the dashed lines in Figure 2. It should also be
noted that r2CR can be negative, in contrast R2cl and R2Ca of the infinite space solution
which are limited to positive values by S(Ci) and S (C2) respectively.

The form in which the normal displacement is written in Eq. (15) is somewhat
suggestive and a word of speculation on the displacement for a material which gives rise
to more than one surface-wave velocity seems in order. Corresponding to the Rayleigh
wave velocity cR , there are also velocities (2c2) and (c2//3) which could give rise to singular
expanding circles on the surface of the elastic half-space, but are prevented from doing
this in the present case because of the limitation of the material constants. There would
also be the possibility of other singular lines at r2ci = 0 and r2c,/f = 0.* For the present
case (Poisson's ratio = one-fourth), this behavior lies outside the bounds of the problem-
and must therefore be suppressed.

Fig. 2. Surface, wave-front patterns at time t for a moving pressure spot on the surface of an elastic
half-space

(v = velocity of moving pressure spot, c2 = velocity of shear waves,
c/ = velocity of dilatational waves, and cR = velocity of Rayleigh waves)

*Of course, for different material properties, the roots of the algebraic equation determining the
Rayleigh wave velocity would no longer be 2e2, c2/)S, and c2iy. These are used here merely for purposes
of illustration.
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Appendix

Behavior of f(r) in the range 0 < r < t. As noted in Sect. 3, integrals of the type
/J g(r)H[f(t)] dr depend on the intervals of r, in the range 0 < r < t for which /(t) > 0.
Integrals of the type h(r) 5[/(r)] dr depend on the zeros of /(r) in the range 0 < r < t.
It is easy to see that both questions depend essentially on the roots of the algebraic
equation,

/(T) = t - r - ^ = 0, (A-l)

or

(f2 - c2)t2 + 2{ct - zv)t + R2 - c2t2 = 0,

where R(r) = (x2 + y2 + (z - vr)2)1/2 and R = (x2 + y2 + z2)1/2.
Solving formally for these roots gives,

(zv - c2t) ± cRe
~  v* _ c2 , (A-2)

where Rc = [(2 — vt'f + (1 — v2/c2)r2]1/2 as previously defined, r, is a function of the five
parameters r, z, v, c, t and it should be recalled that r > 0, — <z<+co;
0<v<+o°,c>0, and t > 0. The location of the r„ roots in the (0, t) interval ob-
viously depends in some way on the relative values of these five parameters. An ex-
amination of Eq. (A-l) supplies the necessary information. The results are shown in
figure A-l. Although these results have been derived explicitly for the moving source in
an infinite elastic body, they also hold for the half-space problem of section IV provided
z is replaced by x, r by y, and hence Rc by rc . Figure A-l shows the important features
of /(t). In detail, these curves may look different for special values of the parameters.
For example on the z axis (r = 0), the curves are replaced by straight lines since now

/(t) - t — T — — | z — VT I

which is a linear equation in r. Eq. (A-2) still applies however.
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CASE I osvsc
f f

t *1* t

(t-R/c)<o (t-R/c)=o (t-R/c)>o

CASE HA v >c , z < . r.
V(v/c)2-|

SAME RESULTS AS CASE I

CASE HB v>c, , zfc
^(v/c)2-!

t

T»T-t

f~V V-/(v/c)2-| <0 V v V(v/c)2-|»o

f f f

T_*0 v+ t

i-rHw-i' ><> t-|-f y(v/c)2-f >» t-|—5-^(»/c)2-i'»o
R>ct R = ct R<ct

f(r)«t-r- ^V(z-vt)2 +r2"

Fig. A-l. Behavior of /(r) in the range 0 < r < /

Finally, in evaluating the integrals in Eq. (12), integrals of the type

[' Kr)HUei(r)]H[-fCB(r)] dr,
Jo

are encountered where the velocity c in /(t) is replaced by the appropriate subscript on
/(r). The addition of the function II[—jcR(j)} is an added complication but all the
information which is needed to set the proper limits on the integral is still contained
in Fig. A-l.


