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A METHOD OF SOLVING A SYSTEM OF LINEAR EQUATIONS
WHOSE COEFFICIENTS FORM A TRIDIAGONAL MATRIX*

BY

THOMAS C. T. TING
Brown University

1. Introduction. Consider the following system of simultaneous linear equations

— 2aa + x2 = <2i ,

Xi — 2x2 + x3 = d2 ,

x2 — 2x3 + x4 = d3 , (1)

x3 — 2x4 + x5 = d4 ,

x4 — x5 = d5 ,

where d{ (i = 1, 2, , 5) are known quantities. Suppose we want to solve Eqs. (1)
for different sets of d( . To be more general, suppose we want to solve the system of
equations

Ax = d, (2)

where A is a non-singular tridiagonal matrix (not necessarily symmetric) whose ele-
ments are given and fixed while d will be changed from time to time. Since A is non-
singular, one can obtain the inverse A'1 of A and determine x by

x = A'1 d. (3)

A~1 so obtained, however, is no longer a tridiagonal matrix. If 1 is a n X ft matrix,
we will have in general n2 elements of A-1. When n is large, this method becomes un-
wieldy, even with an electronic computer.

Linear equations similar to Eqs. (1) are frequently encountered in problems of
mathematical physics. For instance, the backward finite difference method for solving
the heat equation requires the solution of equations (2) for each step where A is fixed
and d is changed from step to step. Heat equations also appear in the study of longitudinal
impact on visco-plastic rods. The solution of other problems, such as discretely loaded
strings and the application of the three moment theorem to continuous beams, result
in equations of the form of (2).

Methods are known which enable one to determine x of (2) more efficiently than by
using Eq. (3) (see [1], [2] for example). In the following, we will present another method
which is very efficient and convenient for ordinary physical problems. The comparison
with the traditional triangular decomposition method is presented in the Appendix.
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2. The method. We shall discuss the following system of equations:

blxl + a[x2 = dt ,

a2xi + b2x2 + a'2x3 = d2 ,

a3x2 + b3x3 + a'3xt = d3 , (4)

an-lZn-2 + + a'n-xXn = d„_j ,

anXn-l + = dn .

To discuss our method, we will consider first a special case in which di = d2 = ■ ■ ■ =
dn_i = 0 but dn 0. We define:

c2 = -ai/h , ci+1 = -a'i/fafii + bi). (5)
Starting from the first equation of (4) by Gaussian eliminations, we obtain:

X\ = C2X2 ,

%2 = 63X3 »

(6)
Xn—1 Cn%n 1

xn = dn/(ancn + bn).

Hence we determine xn from the last equation of (6) and then determine the other
values x„_i , x„_2 , • • • , xt .

Although this is trivial, let us illustrate this special case by taking d1=d2=d3=di = 0,
d5 = — 1 in Eqs. (1). The values of c, for Eqs. (1) are listed in the second row of Table 1.
The last row of Table 1 gives the solution for a:,- . Notice that x5 = 5 by the last equation
of (6). The other equations of (6) give x4 = c5x5 = 4, x3 = c4xt = 3 and so on. Hence
Ci is the "left carry-over factor" of x{ to .

Table 1

d\ = di = d3 = dt = 0, dt = —1, Eqs. (1)

(1) i = l 2 3 4 5

(2) Ci = 1/2 2/3 3/4 4/5

(3) Xi = 1<—2<—3<—4<—5

In the same manner, one can introduce the "right carry-over factors". Indeed,
when di 9^ 0 and d2 = d3 = ■ ■ • = dn = 0, one obtains

Xn = Cn-tXn-! ,

%n-l ~ C'n-2Xn-2

(7)

Xi = dj{a[c[ + bO,

x2 = c[xi ,
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where

cLi = ~ajbn , cU = —ai/(a[c'i + bx). (8)

Taking Eqs. (1) as an example again, we put di = — 1, d2 = d3 = = ds = 0. The
solution for a;,- is shown in Table 2.

Table 2

di = —1, d2 = d3 = di = ds = 0, Eqs. (1)

(1) i = l 2 3 4 5

(2) c[ = 1 1 1 1 1

(3) X{ = 1—>1—>1—>1—>1

Next, we consider the case when di are all zero except dk where 0 < k < n. The
first (fc — 1) equations of (4) give:

X\ — C2X2 t

X2 = C3X3 ,

Xk-\ — CjcX/c .

The last (n — k) equations of (4) give:

Xn = ,

£n-l — C'n- 2%n-2 I

xk + l = c'kXk .

Hence the fcth equation of (4) gives:

akckxk + bkxk + a'kc'kxk = dk .

Let us define

Wi = I/(a fit + bt + a[c[). (9)

Then we have

xk = wkdk ;

Wi will be called the "weight factor" of xt . As an illustration, let d3 = —l,d1=d2 =
di = ds = 0 in Eqs. (1). The solution for this case is shown in Table 3. The right carry-
over factors c't are shown in the second row with the arrow heads (—>) between the
factors. Similarly, the left carry-over factors c< are listed in the fourth row with the
arrow heads («—) between the factors. With these arrow heads, it is easier to identify
which carry-over factor is to be used in the calculations.
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Table 3

di — dz — di ~ d& = 0, di = —1, Eqs. (1)

(1) r = l 2 3 4 5

(2) cj = 1 —► 1 —» 1 —>1 —♦

(3) Wi = -3

(4) Ci = «- 1/2 <- 2/3 <- 3/4 <- 4/5

(5) x,- = 1

Finally, we will illustrate the general case in which d{ are all specified. It is seen from
the previous examples that the values of x{ in general consist of three parts, namely:
the value due to its own weight, that due to the right carry-over, and that due to the
left carry-over. If we denote these values by Wt , C< and C\ respectively, we have

Xt = Wi + C'i + Ci .
To illustrate this, we take di = d2 = d3 = d4 = d5 = —1 in Eqs. (1). The values W{
are obtained by

Wi = Widi ,

where w{ is the weight factor expressed by Eq. (9). Notice that cx and c'5 are taken as
zero in obtaining Wi and ivs. The values of wt and Wt for this case are shown respectively
in the third and sixth rows of Table 4. The procedure of calculation may be followed in
the table. For instance,

Ci = WlC[ = 1, C'3 = (W2 + C"2)c'2 = (2+ 1)-1 = 3;

C\ = Wtcf = 4, C2 = (Wa + Ca)c3 = (3 + 6)-2/3 = 6.

In other words, C' and C,- are obtained by the recurrent formulae

C'i+1 = (Wi + Cdc'i
Ci= (Wi + Ci)Ci .

It should be noticed that C< and C,- are obtained independently. One can calculate C'
first and then Ci or vice versa. W, , however, must be calculated before C' and C,- .
Hence, the method has symmetry in the procedure of calculation.

If we are given another set of d{ in Eqs. (1), we can use the same values of c' , c,-
and Wi in Table 4 to calculate W( , C'i and Ct . c[ , c,- and w{ are obtained from a' , a{
and bi . Once the former are obtained the latter are no longer needed. Notice that the
former has exactly the same number of elements as the latter does.

It is seen from Tables 1, 2 and 3 that if there is only one non-zero di it is not necessary
to calculate all of the carry-over factors and the weight factors to obtain the solution
for Xi . On the other hand, if we want to know only one of the x{ , say xk , we do not
need to calculate all of the "carry-over values" C[ and Ci . Indeed, only those C' and C,-
where i < k, j > k are needed.

In deriving Eqs. (5), (8) and (9), we tacitly assumed that the denominators do not



1964] LINEAR EQUATIONS WITH TRIDIAGONAL MATRIX 109

Table 4

di = di = d3 = dt = ds, = —1, Eqs. (1)

(1) i = 1 2 3 4 5

(2) cj= 1 —>1 —>1 —>1 —»

(3) if i = -1 -2 -3 -4 -5

(4) Ci = 1/2 <- 2/3 <- 3/4 <- 4/5

(5)

(6)

(7)

(8) Xi = 5 9 12 14 15

vanish. It can be shown that the denominator of Eq. (9) does not vanish if A is non-
singular.

In Eq. (5) we can assume that 5i ^ 0. Should bt be zero, one can solve x2 explicitly
from Eqs. (4) and Eqs. (4) are reduced to similar equations with one unknown less.
Similarly, we can assume that bn ^ 0 in Eq. (8).

It remains to investigate the possibility that (a.-Ci + bt) of Eq. (5) and (a'c- -f &<)
of Eq. (8) may vanish, in other words c< and c' may be infinite. We will see later that
ck = 0° implies that the value xk of Eqs. (4) does not depend on dk , dk+l , • • • , dn .
Similarly, when c'k = «>, xk does not depend on di, d2, • • ■ , dk. In many physical prob-
lems, for instance in the solution of the heat equation by the backward difference method,
the value of xk depends on all the values d,- . Hence, in most physical problems c,- and c[
rarely become infinite. For completeness of our method, however, we shall discuss this
case in the next section.

3. Modified carry-over factors. As in the first example of section 2, we assume
that di = d2 = • ■ • = dn-i = 0, d„ ^ 0 in Eqs. (4). By Gaussian elimination to the
(k — l)th equation, one obtains Eqs. (4) in the following form:

x, = c2x2 ,

X2 — C3X3 ,

%k-2 — Ck-iX/c-i J (10)

(a^c*-! + b^Xt-i + a£_iX* = 0 ,

«A-i + bkxk + a',xk+1 = 0 ,
»

a nJ'n __ ̂ I bnxn - dn ,

c2, c3, • • • , ck-1 are determined by (5) and we assume that they are all finite up to ci_1 .
Suppose (ak-!Ck-i + bk-0 = 0 so that ck does not exist. First we show that (ak^1ck-l +
and ak cannot both vanish if the matrix A is non-singular. Indeed, if both vanish, the
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following set of Xi will satisfy the corresponding homogeneous equations of (10):

Xi = C2X2 , X2 — C3X3 1 • • • , Xk-2 — Cic-iX/c-i , (11)

Xk = Xl+1 = • • • = x„ = 0.

By assuming an arbitrary non-zero value for xk-! in (11) one gets a non-trivial solution
of Eqs. (10) with dn = 0. Since Eqs. (10) and Eqs. (4) are equivalent, this implies that
Eqs. (4) has a non-trivial solution when d, are zero. This contradicts the assumption
that the matrix A is non-singular. Hence (at_iCt„i + 6t_i) and ak cannot both vanish.

When (at-ic*-! + bk-0 = 0, Eqs. (10) give

xk = 0, xk„x = — (a'k/ak)xk+1 .

We define:
ck+1 = 0, c(t+1) = -a'k/ak when ck = °° .

Then we have

%k = iXk+x = 0, Xk-i = C(k + i)Xk+i .

C(t+1) will be called the "modified left carry-over factor" of xkil . It defines the portion
of xk+1 to be carried over to xk-i instead of xk . Since we have proved that ak ^ 0, c(t+1)
exists.

The procedure of deriving the modified carry-over factors is equivalent to inter-
changing two equations to avoid a zero pivot.

It should be noticed from Eqs. (10) that when (at_iCt_i + bk-1) = 0, i.e., ck = ootxkis
zero even if dk, dk+1 , • • • , dn are non-zero. Hence xk is independent of dk, dk+l , • • • , dn
when ck = <».

By decomposing A into a lower triangular matrix and an unit upper triangular matrix
(see Eq. (22) of the Appendix), one can show that (ak-1ck^1 + = 0 implies that
the (k — l)th leading principal minor of A,

61 a[

= 0.

2 &*—2 Ot-2

ak-1 bk-x

Hence, (a,c, + bi) = 0 if and only if a leading principal minor of A vanishes. If A is
symmetric positive definite (which is the case in many physical problems), no minors
are zero [3].

As an example, consider the following system of equations:

—22! + x2 = di ,

2xt — x2 + x3 = d2 ,

x2 — 2x3 + xt = d3 , (12)

x3 — 2Xi + x5 = di ,

Xi — x5 = d5 .
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The left carry-over factors c,- are listed in the fourth row of Table 5. Here we have
c2 = i and c3 = Hence c4 = 0 and c(4) = —1 by our definition. In Table 5, we do
not list c3 and c4. In the place of c4, we put c(4) . The long arrow head between c2 and c(4)
suggests that the carry-over from i = 4 should skip i = 3 and go to i = 2. There is
no carry-over to i = 3. In the fifth row we give a special case in which di = d2 = d3 =
di = 0, dr> = — 2. The solution for this case is shown in the sixth row. x3 = 0 in this case.

A similar definition can be applied to the modified right carry-over factors. We
define: when c'k = <*>, c£_x = 0 and xh+1 = c[k^1)xh-1 where c'(k_x) — — ak/a'k . The right
carry-over factors c' for Eqs. (12) are shown in the second row of Table 5. Here we
have c' = <=°. Since there is no c'a , we can ignore the modified carry-over factor c'0) .

Table 5. Solutions of Eqs. {12)

(1) i = 1 2 3 4 5

(2) c[ = °°  »1  »1 >1——

(3) Wi = "oT 1 tl) -1 -2
(4) Cj = < 1/2 c   (-1) < 1/2

(5) di = 0 0 0 0 -2

(6) Xj = —1<  2< — 2< 4

(7) di = 1 0 0 0 0

(8) Xj -- 0 ■>! >1 >1 >1

(9) di = 0 0 2 0 0

(10) Xj — l~f 2 *■- 0 >0 >0

(11) dj = 1 2 2 2 -2

(12) C'i =

(13) W,- = 0-

(14) Cj = 2

(15) Xi = 2

Finally, we consider the case in which d{ are all zero except dk , where 0 < k < n.
By Gaussian eliminations from the first and the last of Eqs. (4) respectively, the (k— l)th,
ftth and (Jc + l)th equations of (4) can be written as:

(at-iCk-i + bk-i)xt_i + a'k-i.xk = 0,

«A-i + bkxk + a'kxk+1 = dk , (13)

Q-k+\%k "I" (fik+1 Qk + lCk+l)Xk+i — 0.

If ck, c'k both exist, the second equation of (13) yields xk = wkdk as discussed in Eq. (9). We
shall investigate the case in which ck or c'. is infinite, i.e., the case in which {ak-\Ck-\ + bk-i)
or (bk+1 + ak+1ck+1) vanishes.

First, one can prove that (ak-,ck_i + bk-x) and (bk+1 + a'k+1c'h+1) cannot both vanish
if A is non-singular. The proof is similar to the one we proved in the beginning of this
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section. Should they both vanish, one can find a non-trivial solution of Eqs. (13) with
dk = 0 and hence a non-trivial solution of Eqs. (4) with all d{ = 0. This leads to a con-
tradiction.

Suppose (at-jc*-! + = 0 while (bk+1 + a'k+ic'k+1) ̂ 0. Eqs. (13) give:

xk = 0, xk+i = 0, and xk^ = dk/ak .

We define:
When ck = <*>, wk = 0 and xk-i = w(h)dh where w(t) = l/ak . wlk) is the modified

weight factor which defines the weight factor by which dk should be "carried-over"
to xk-i instead of "imposed" on xk . The fact that (at_iC*_i + bk-,) and ak cannot both
vanish assures us the existence of w<k) .

To illustrate the use of ww , we take di = d2 = dt = d5 = 0, d3 = 2 in Eqs. (12).
This is shown in the ninth row of Table 5. Since cs = °°, w3 = 0 and w(3) = 1 by our
definition. In the third row, in the place of w3 , we put w(3) . The arrow head on the top
of w(3) suggests that the "weight" of d3 should be carried over to x2 which is to the "left"
of x3 . Now, since w3 = 0, x3 = w3d3 = 0 and x2 = w,3)d3 = 2. x4 = c'3x3 = 0, x5 =
eft4 = 0 and Xi = c2x2 = 1. This is shown in the tenth row.

The counterpart of ww is w',k) , which is defined in the same manner:

When c[ = wk = 0 and xk+1 = w[k)dk where w[k) = l/a'k .

In Eqs. (12), c[ = <». Hence wt = 0 and w'n = 1. This is shown in the third row of
Table 5. The solution of Eqs. (12) when d{ are specified in the seventh row is shown in
the eighth row.

In closing this section we give an example in which d{ of Eqs. (12) are all specified
as indicated in the eleventh row of Table 5. The procedure of calculation is the same as in
Table 4 except that whenever wk = 0, the values w,k)dk or w[k)dk are not placed in the
row of Wi but carried over to the row C< or C' . w(k jdk and w{k)dk are easily identified in
Table 5 by the dotted-lined arrow heads.

4. An application. The method is also applicable to problems such as that of heat
conduction in a semi-infinite rod, where the difference equations involve an "infinite"
number of dependent variables. To illustrate, we consider the problem represented as
follows:

d2v _ dv _ .
dx* ~ dt ~ '

v(pc, 0) = 0, 0 < x < oo , (14)

v(0, t) = 1, 0 < t.

The solution of (14) is given by

where

„(I, ,) _ erfc (JL.J,

erfc (2) = —7= f e~du.
VT •

(15)
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Let us solve Eqs. (14) by the backward finite difference approximation. By choosing
the mesh ratio At/(Ax)2 = 1, and denoting v(iAx, jAt) by viti , one obtains the following
"infinite" system of equations:

Vl.i = 1,

"l.l "t" 3^2,1 V3-j = f2,)-1 ,

I Q _ (16)
^2, j ~r 3^3 Vifj — V3tj-1 ,

—Va.i + 3^4,; — Vs.i = ,

The left carry-over factors are

c2 = 0, ci+1 = 1/(3 - c<). (17)

This is shown in the fourth row of Table 6. Notice that c, approaches a constant value
as i increases. In fact, the difference equation (17) has a closed form solution (see [4]).

C>+2 = sinh^ +1) ' Where e" = (3 + Vl)/2' (18)

Hence the asymptotic value of c,- as i —» is

e~" (3 - V5)/2 = 0.38196 • • • . (19)
Now, let us determine the right carry-over factors. We can assume that v(°°> t) =0.

Then we have

cL = 0, eU = 1/(3 - c<). (20)
This is a difference equation similar to Eq. (17). According to the asymptotic behavior
discussed above, we conclude that

C[ = c'2 = = c\ = (3 - V5)/2 = 0.38196
as long as i is finite. This is listed in the second row of Table 6. The third row then gives
the weight factors w< . All the numbers in Table 6 are rounded off to three digits after
the decimal point.

We remark that the asymptotic solution c«, of Eq. (17) is independent of the initial
value c2 . Hence, the assumption that cL — 0 in Eq. (20) is immaterial.

Since v1<a = 1, and vii0 = 0, i ^ 1, the solution for the first step vitl is readily obtained
by using the factors c' alone. This is shown in the fifth row. The solutions for the second
and third steps are shown respectively in the ninth and thirteenth rows. In the eighth
and twelfth rows, we have assumed that C8,2 and C8,3 are small and negligible. For com-
parison, we list the solution v(iAx, 3At) obtained from Eq. (15) in the last row. It should
be noticed that while v(iAx, 3At) are the exact solution of Eqs. (14), vii3 are the "exact"
solutions (with ±1 round-off error in the last digit) of Eqs. (16).

5. Conclusions. The method described here is very convenient and efficient for
most physical problems which have the system of equations in the form of Eqs. (4).
The method has symmetry in the procedure of calculation and has flexibility in that one
can eliminate unnecessary computations. For instance, if we want to determine a par-
ticular Xi only, say xk, we do not need to find all or part of x{ before we know the value
of xu . We can determine xk independently.
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Table 6. Solutions of Eqs. (16)

(1) i = 1 2 3 4 5 6 7 8 •••

(2) c[ = .382 -► .382 — .382 .382 -> .382 .382 -> .382 -* .382 ••
(3) Wi = 1.000 .382 .438 .446 .447 .448 .448 .448 ••
(4) a = <— 0 *- .333 .375 <- .381 <- .382 .382 <- .382 ••

(5) Vi, i = 1.000 .382 .146 .056 .021 .008 .003 .001 ••

(6) C;,2 = .382 .202 .102 .049 .022 .010 .004 ••
(7) Wi,i = 1.000 .146 .064 .025 .009 .004 .001 .000 ••
(8) Ci,i = 0 .025 .011 .004 .002 .000 .000 — ••

(9) Vi,i = 1.000 .553 .277 .131 .060 .026 .011 .004 ■■

(10) CI 3 = .382 .226 .133 .073 .038 .019 .009 •
(11) W,,3 = 1.000 .211 .121 .058 .027 .012 .005 .002 ••
(12) Ci, 3 = 0 .049 .026 .012 .005 .002 .001 — ••

(13) v^, = 1.000 .642 .373 .203 .105 .052 .025 .011 ••

v(iAx, 3A«) = 1.000 .683 .414 .220 .102 .040 .014 .004 ••

When the carry-over factor is infinite, a modified method is offered. This, perhaps,
may complicate the programming for use in an electronic computer. However, this is
rarely needed in ordinary physical problems.

Theoretically, this method is applicable regardless of the magnitude of the carry-
over factors. In numerical calculations, however, a large carry-over factor can cause
serious round-off errors in the solution. Another "modified" method could be devised
to prevent the large factors if one followed the classical method of selecting the largest
pivot.

Appendix

We shall discuss briefly the method described in section 2 in matrix notation and
compare it with the traditional method of triangular decomposition. Let us write Eqs.
(4) as

Ax = d. (21)

According to our method, the matrix A is first decomposed into a lower triangular
matrix L and an unit upper triangular matrix C, namely,

A = LC (22)
where

1 -c2

^   ^2 b2 C2CI2 Q   1 C3

bn + c„aj 1 — c„
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c, are defined in Eqs. (5). Next, in the same manner, we decompose A into an upper
triangular matrix U and an unit lower triangular matrix C', namely,

A = UC (23)
where

U

+ c[a[

, C' =

1

—c{ 1

bn-1 + Cn-lCln-l a'n-i

K .
c\ are defined in Eqs. (8). If we define the diagonal matrix W by

w

-cU 1
-C'n-1 1

W= w2

wj

where w, are expressed by Eqs. (9), we have, finally

A = L + U — W. (24)
Equation (24) with Eqs. (22) and (23) give

W = L + U - A
= AC + AC''1 - A
= A(C~> + Cl - I).

Hence
A~' = (C'1 + C'"1 - I)W"

and the solution of Eq. (21) becomes

x = (C"1 + C'-1 - /)(F~'d). (25)

This is the method described in section 2 (see Table 4).
The traditional method is equivalent to decomposing A into a lower triangular matrix

L and an unit upper triangular matrix C as shown in Eq. (22), and then decomposing L
into a diagonal matrix D and an unit lower triangular matrix C*. In other words,

A = LC = DC*C (26)
where

D =

bH + cna„.

C* = b2 + c2a2

bn + c„a„
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Hence

A-1 = c~'c*_Izr
and the solution of (21) is

x = C~IC*'1(D~1d) (27)

In the traditional method, one can treat the elements of D as weight factors and the co-
diagonal elements of C and C* as carry-over factors. The procedure of calculation would
be slightly different from our method. If one wanted to determine a particular element
of x only, one has to invert the whole matrix C* and part of the matrix C by Eq. (27),
whereas by Eq. (25) only parts of matrices C and C' need to be inverted.

Should one of the diagonal elements of the matrix L vanish, the corresponding co-
diagonal elements of C and C* become infinite and the methods represented by Eqs.
(25) and (27) fail. Matrix notation for the method using modified carry-over factors are
omitted here. However, if one follows the method described in section 3 and writes the
method in matrix notation, one will find the modified carry-over factor placed in the
third diagonal of C (or C') with two zeros in the co-diagonal adjacent to it. There is a
corresponding non-zero element in the third diagonal of L (or U).
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