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ON THE FORMULATION AND ITERATIVE SOLUTION
OF SMALL STRAIN PLASTICITY PROBLEMS*

BY

KERRY S. HAVNER
Douglas Aircraft Co., Inc., Santa Monica, Calif.

Abstract. This paper is concerned with a general method of formulation and
iterative solution of small displacement plasticity problems, using the Hencky-Nadai
hardening law as mathematical model for the material behavior. Beginning with a mini-
mum energy principle for small thermal-mechanical strains under simple external loading,
quasi-linear partial differential equations are formulated and a method of iteration by
successive solutions is proposed. A finite-difference discretization of the equations (in
two dimensions) is obtained through minimization of the total potential energy function,
leading to positive definite symmetric matrices for general boundary configurations.

1. Introduction. The general stress-strain law of the linear incremental theory of
small plastic deformations has been shown by Drucker to rest solely upon the funda-
mental postulate of material stability [1, 2], the extended stability postulate [3, 4], and
the assumption of a smooth (regular) loading surface / in stress space. If the alternate
assumption is made that a corner forms on the yield surface at the point of loading, a
non-linear incremental theory results.

A significant body of experimental evidence has been reported since 1953 indicating
the regular appearance of corners (see, for example, the discussions in [5] and [6]), and
although there is also contrary evidence which tends to refute the concept of a corner
carried with the point of loading, the matter does not appear to be sufficiently resolved
to justify the acceptance of linearity and exclusion of non-linearity solely on experi-
mental grounds. For the purpose of mathematical stress analysis it would seem partic-
ularly appropriate to utilize a non-linear incremental theory should that theory lead to
a more feasible method of solution of complex problems. To this end a number of in-
vestigators have succeeded in rigorously justifying the relatively simple total stress-
strain laws (deformation theory) within a theoretical framework of the fundamental
postulate and singular loading surfaces [7-10]. In particular, Budiansky [8] has used the
lack of uniqueness in direction of the incremental plastic strain vector at a corner (as
given by Drucker's postulate [2]) to establish that the Hencky-Nadai deformation theory
can be viewed as an integrable non-linear incremental theory that is mathematically and
physically consistent for a range of loading paths including but not limited to propor-
tional loading. In differential form the Hencky-Nadai law can be written

deft = dAi(J2) Su + A^JY) dsn (1)
where Sa = <ru — lakkSii is the deviatoric stress tensor and A,(./2) is an experimentally
specified function of the second deviatoric stress invariant. Budiansky's theory of the
validity of this law has served as a theoretical basis for several papers [11-13] devoted
to the solution of particular boundary value problems. In each of the problems considered
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it has been shown that the deviations of the stress paths from proportional loading are
well within the permissable range established by Budiansky. It also has been shown
[12, 13] that corresponding results based upon the simplest linear incremental theory
of isotropic hardening (Laning hardening law) differ by only a small amount from the
Hencky-Nadai deformation theory solutions. In light of these investigations it seems
reasonable, from the viewpoint of mathematical stress analysis, to consider the use of
total laws justified for many problems involving contained plastic deformations and
simple external loading paths.

Accepting the Hencky-Nadai hardening law as an appropriate mathematical model
of material behavior in small displacement plasticity problems, this paper is concerned
with the formulation and numerical solution of these problems. Beginning with the
variational principle for the total potential energy function, quasi-linear partial dif-
ferential equations will be derived. An iterative method of successive solutions of these
equations will be proposed and the question of convergence discussed. For the case of
plane strain, two variable displacement problems, a finite-difference discretization based
upon minimization of the total potential energy function will be presented. It will be
proved that the resulting coefficients matrix is symmetric and positive definite for an
arbitary boundary configuration and thermal-mechanical system of loading, thus as-
suring convergence of the "internal" iteration at each step of the successive solutions
method.

2. Energy function and quasi-linear differential equations. Defining the strain
energy density as

W(eit) = f Uij d(tu — aTdi,) (2)
Jo

(wherein the usual summation convention of cartesian tensor calculus is adopted, a and
T are the coefficients of thermal expansion and temperature rise, respectively, and 8{j
is the Kronecker delta), the corresponding extremum principle for the total potential
energy function it is

f W(e'„) dR - [ dR - f XiU\ dS = St' = 0
-J R •> R Jst J

(3)

where ST is that portion of the boundary surface S on which tractions are prescribed.
The symbol S is understood to represent a kinematically admissible variation in the true
strain state and SW^j) = o-,',Se';, the superscript t denoting the true state. The dis-
placements u{ are related to the strains eu through the small strain-displacement rela-
tions*

«</ = Uui.i + Uj,i) in R + S (4)
and the boundary tractions X{ are related to the stresses by the equations

<TijHj = Xi on S. (5)

The -a, are the direction numbers of the outward unit normal to S. (The extremum
principle of Eq. (3), derived by Greenberg [14] for a general deformation theory of

*A subscript preceded by a comma indicates differentiation with respect to the corresponding
coordinate variable.
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plasticity and by Drucker [15] for a non-linear elastic material, becomes a relative
minimum principle for the Hencky-Nadai material, as shown by Kachanov [16] and
discussed by Greenberg [14].)

Considering now the Hencky-Nadai total law and the stress-strain relations of un-
coupled thermoelasticity,

i ocT (51j 2i(j- ̂ 1' E ^kk^ii ' ^iJ (6)

and

2)Sij = , (7)Z (J

the variational principle can be used to establish quasi-linear differential equations and
natural boundary conditions for thermal-mechanical displacement problems. Introducing
the parameter

* = 5 = = (8)€ i'.e

(where EBec is the secant modulus of the stress-strain curve from the tensile test) and
inverting Eqs. (6) and (7), a stress-strain relation in quasi-linear form is obtained:

o-,,- = 2(r*ei(- + \*eSu - (3X + 2G)aT8ii (9)
where

6 = Ckk ■

The modified material properties denoted by (*) are defined in terms of the parameter
yp by the equations

E = E v* = v + °-5^
1 + V ' 1 + '

E* v*E*
G* = n/1 ■ , X* =

(10)

2(1 + v*) 860 ' (1 + ?*)(1 - 2v*)

The equivalent stress a and equivalent plastic strain ep, related through the tensile test,
are given as

<r = "\/3J2 = , I = e (it) = \/|e.'e' . (11)

(?se0 is the secant modulus of the theoretical stress-strain curve of pure shear predicted
by the tensile test, and

3X* + 2C* . . 3X + 2C (12)

where X is the Lame constant.
Substituting Eq. (9) into Eq. (2) and partially integrating, the strain energy density

for the Hencky-Nadai material can be written

W(e',) = ["' d(e,,ef,) + \ [' X*(e) d{e2)
J 0 6 J 0

- (3X + 2G)cxTe' + f(3X + 2G){<xT)\ (13)
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Defining

['" <*(«„«„) f" \*(e)d(e2)
G = ^ r-r——- , X = ^  , (14)

etitki (e )

and substituting for the strains from Eqs. (4), the equation for the total potential energy
function in terms of the displacements becomes*

ir = g f + ui4* Xe2 — 2(3X + 2G)aTe

+ 3(3X + 2G)(aTf - 2FiUi] dR - [ X,Ui dS. (15)
Jst

From the extremum principle

8t = 0 = f [8W — FtSUi] dR — f XiSUi dS (16)
J R J St

where, from Eqs. (13), (14), and (15)

5TF(«,-,) = (G*)(Uij -f- Uj,i)SUi,j X*e5e — (3X -t- 2G)aTSe. (17)
Thus

St — 0 = f [{(?*(wi,; + Uj,i) + X*e5,-,- — (3X -J- 2G)aTSi, } Su,i j
Jr

— F,SUi] dR — f X,Ui dS (18)
Js

with but = 0 on SD. Adding and subtracting terms and using the divergence theorem,
the variational equation is expressed in final form as

Sir = f [{G*(uij itj.i) -f- X*e5,,- — (3X -f- 2G)aT5,,}w,- — .X^]5Wi dS
Js

~ f [(X* + G*)e,i + G*V2w,- + G*(Ui,j + «,-.,■) + X*e + F{
Jr

- {(3X + 2G)aT},i]8ui dR = 0 (19)
from which

{G*(iii,j -f- Uj,,) -f- \*eda — (3X -f- 2G)aTSi, }nj = X{ on St (20)
and

(X* + G*~)e,i + G*VV + G*{uUi + u,„) + X*e + F,

- {(3X + 2G)aT\,i = 0 in R. (21)
Eqs. (20) are the natural boundary conditions and Eqs. (21) the governing quasi-linear,
elliptic partial differential equations of the small strain plasticity problem as considered
herein.

An alternate set of quasi-linear equations, also based upon the Hencky-Nadai law

*The superscript t henceforth is dropped for simplicity.
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(but restricted to isothermal deformations), was derived by Ilyushin [17] by "lumping"
all of the plasticity effects into a fictitious body force term. It is readily demonstrated
that Uyushin's equations and the isothermal form of Eqs. (21) are (as indeed they must
be) algebraically equivalent, although they differ in viewpoint in their respective tech-
niques of successive approximation. Uyushin's formulation is conceptually appropriate
when the Green's function of the corresponding isothermal elasticity problem is known,
or when the general solution of the homogeneous elastic equations is obtainable in closed
form, in which case the successive corrections [17] to the fictitious body force term cor-
respond with successive particular solutions of the elastic equations. (Integral equation
solutions to several one-dimensional problems, based essentially upon Uyushin's con-
cepts, have been given by Mendelson and Manson [18].) In contrast, Eqs. (21) are an-
alogous to the general equations of uncoupled thermoelasticity and are proposed as an
appropriate basis for the numerical analysis of problems which do not admit of an "exact"
solution even when plasticity effects are negligible. The corresponding method of itera-
tion to obtain successively improved values of the quantities X* and G* will be discussed
in Section 4.

3. Variational formulation of difference equations. The variational method of
formulating finite-difference equations corresponding to elliptic boundary value problems,
suggested as early as 1928 [19], has received attention and widespread application only
in recent years (see [20, 21, 22], for example). This method holds two important advan-
tages over the more traditional approach of directly approximating the derivatives in the
governing differential equations: (1) the natural boundary conditions arising from the
minimization of the potential energy function do not require an additional, special set
of difference approximations; (2) the resulting coefficients matrix for a given boundary
value problem is symmetric and, in many cases, positive definite, thereby assuring con-
vergence of any one of several iterative techniques. For the small displacement problem
treated herein, limiting consideration to the special case of plane strain*, a quadrature
formula for the total potential energy function ir can be written

Tf = Z(W - FiUt)ARa - E (XiM,)«'A<Sa. (22)
R St

where the integrations over R and ST have been replaced by summations over a discrete
set of points q and q', corresponding to some finite-difference network, with AR, and
AiS0., representing the associated incremental areas and boundary curve lengths, respec-
tively. (The horizontal bar above a function indicates the corresponding discretized form.)
Denoting xu x2 by x, y, uu u2 by u, v and Xu X2 by X, Y, the equation for ir becomes

7f = 0 — 22 [(3X + 2G)aT(u,x -(- vJy) + Fxu + Fyv
R

f(3X + 2G)(aT)\AR. - Z (Xu + F^)a.AS„. . (23)
St

0 is that part of the total potential energy function that is quadratic in the derivatives
of the displacements. By taking the functions G* and X* as constant with respect to dif-
ferentiation by some uP, 0 may be written (see Appendix)

^ [G*u2,x + J(s„ + v,x)2 + v2,y + l\*(u,x + v,yy]aARa ■ (24)

*Other two variable displacement problems (i. e. thin plates and axisymmetric solids) can be
treated similarly.
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Since G* and X* are always positive (see Sect. 4), 0 is a positive semi-definite quadratic
form, expressible in matrix terms as

5 = h{S}T[A]{S] + {5}r{6} + Do • (25)

The order N of the symmetric coefficients matrix [A] is equal to the total number of
unknown displacements u and v in R + ST. {5} is the column vector of these unknown
displacements, and the vector {b} and scalar D0 are determined from the prescribed dis-
placements on SD. From Eq. (23) the potential energy if can be similarly expressed:

X = §{5}r[A]{3} + {S}r{6} + {5}r{c} + D. (26)

The vector {c} arises from the first temperature term and the body force and prescribed
traction terms in Eq. (23), and the scalar D corresponds to D0 and the second temperature
term. The potential energy is minimized by setting the rate of change of if with respect
to each unknown displacement equal to zero. The final matrix equation is

|| = - {5„} = 0 (27)
where {50} = — {b + c\ is the "loads" vector of starting values.

The matrix [/I] can be proved positive definite for a network composed of rectangular
and triangular grid elements, obtained by covering an arbitrary domain with a large
number of irregularly spaced horizontal and vertical grid lines i and j (Fig. 1). Considering
a rectangular element ij, i + 1 j, i + 1 j + 1, ij + 1, appropriate quadrature formulas for
evaluation of the terms in Eq. (24) are

[[ G*ii% dx dy = i{((??+1# + G,■?)(«,♦„ - u(i)2
J Jar

+ (Crf+ij'+i + G*i+i)(ui+ii+i — Mi,+i)2} -jr
S»

Ih \ G*{u,v + ",x)2 dxdy = l u" + Vi+l'z~+ Gr+li

^ +17 -H Uj -f i j | Vj+lj V i j' j j (j* '7+ ^ ^ * 1 j ^ i +1 i +1 V ij +1 j

V Vi £< / "+1V v,- t,i )

+ G*■si: i^t+ij+i itx+1j . Vi+ij+i Vn+iA 1— + j-. )

[[ G*i?„ dx dy = J{(Gfi+1 + G*)(vii+1 - Vi,)2 (28)
J J Aie

+ (G*+n+i + G*+ij)(pi+lj+i — y,+i,)2} —
Vi

\2

+ X*+i;IL i x*(^+°2 dxdy = I u"+Vu+\t Vii)

m fUj + ii U{ j | Vj + ij + i t/j + iA | (Uj + ij + i Ujj +i Vg+i Vii\
V £>• Vi ) "+1V Vi )

+ X*.* + l Wjj+1 I ^i+lj+1 Vi + ij\ \

i+ii+i\ i + vi ) rVi ■
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fin

fii"

-1 i+lj /MM

ij+1

- Ij

n:_,h n:h

(29)

Fig. 1.

Corresponding equations for a triangular element ij, i + 1 j, ij + 1 are

[[ G*u% dx dy = + G$)(ui+lj - w,,)2 &
J Jar &

ILI G*{u'y+°2 dxdy = \ G*{u,i+\~Uu+*+i,~ Vu)\^

[f G*v)v dx dy = i(Gfi+1 + Gfi)(Pu+i ~ v<,)2 k
JJar r],-

ffAB | X*(w„ + v,„)2 dx dy = |Uii + Vi,+1~ V<i)\iVi .

Consider now the conditions under which 0 can be zero. The integral approximations of
Eqs. (28) and (29) are non-negative and are equal to zero only if the following relations
hold for all i, j:

Uii ^i+lj » Vij Vii+1 i (30)

(uij+l — Ui,) + J- (Vi+u - O = o.
Si

These equations are seen to correspond to a rigid body translation of arbitrary magnitude
and a very small rigid body rotation. If the numerical solution of the continuous problem
is to be unique this rigid body displacement must either be prescribed or eliminated.
Thus, it is necessary to specify one u, one v, and at least one additional u or v in the finite-
difference discretization. Consider the case where these values are specified to be zero,
denoting the corresponding 0 by 00. It follows that \b\ = 0, D0 = 0 and

Oo = US}t[A}{8}. (31)

From Eqs. (30), 00 = 0 only if {5} = 0 (i.e. u and v are everywhere zero). Thus, Eq.
(31) is a positive definite quadratic form, and [A] is a positive definite matrix for all
physically realizable values of X* and G* corresponding to the Hencky-Nadai theory.

To obtain specific difference equations at a typical interior point ij (Fig. 1), the
quadrature formulas of Eqs. (28) may be summed over the four network elements sur-
rounding ij and then differentiated. More conveniently, the potential energy function
7r of Eq. (23) can be differentiated with respect to a general uP and quadrature formulas



330 KERRY S. HAVNER [Vol. XXIII, No. 4

consistent with Eqs. (28) substituted after differentiation. The resulting equations for
u and v are (denoting A* = X* + 2(7*)

Vi +t (A*+u + A$ui+li + Vi f Vi-' (AUi + Af^Ui-u + +fi-i Vi

*(G?,+1 + G*)Uii+1 + &-±ii=i (Gr?._i + + (x?+Ii + GfI+1K+u+1
Vi-i

— (Xf+i,- + (?*-Jy.+i,-! — (X?_„ + G*,+i)f,-i,+i + + Gfj-^Vi-u-!

V' +t Vi~l (A*+li + A*) + Vi + 7?'- (4?_11. + 4*) + + (G*+1 + G.*)
?.• ?>-i Vi

+ + ((?*,_! + G*)
Vi-i

Mi, — (>?,■ + i?,-i)[{(3X + 2G)«r}<+1,

— {(3X + 2G)aT},_i,]/i + (£,• + £i~i)(vi + Vi-i)(Fx)nh = 0, (32)

h + (A*+1 + + (4*-! + A + * + T?'-1
Vi Vi-1 6i

-(G?+1, + G,*)vi+li + * f v>- ((??_„ + G*X_lf + (X*+1 + (??+1,)w,+1)+l
?t-l

— (X* _i + G*+i,)Ui +1,_! — (X*+i + (?*_!,)m,_ii+1 + (X*,_i + G*-n)Ui-u-1

_ ^ (Afi+I + A *) + g< + (A?,_l + A *) + Vi +t i'-1 (G*+li + G*)L Vi Vi-i e<

+ ~ ((??-!,- + <?$]»„ - + ?,_1)[!(3X + 2G)aT}ii+1

— {(3X + 2G)aT}ii.1]h + (£< + £i-i)(vi + Vi-i)(Fv)ah2 = 0 (33)

with difference equations for points on or adjacent to the boundary derivable in similar
fashion. For an interior point with equally spaced neighbors (£ = i? = 1), Eqs. (32) and
(33) easily can be shown to correspond to a regular central difference approximation of
the governing differential equations (21).

One possible disadvantage of a variational formulation of the difference equations, as
opposed to a direct discretization of the field equations and boundary conditions, should
be noted. Prescribed traction and "mixed-mixed" boundary conditions are not neces-
sarily satisfied (for a given finite network) by the variational method since they arise as
distinct conditions only in the continuous problem and are not established separately
from the field equations in minimizing the discretized form of the energy function.
Thus, what was cited as one of the advantages of the variational approach could prove,
from the standpoint of accuracy within a specific problem, its primary if not sole dis-
advantage. A direct method of quadratic approximation for first order partial differ-
ential boundary conditions has been suggested and applied by Havner [23, 24] and
Greenspan [25], with excellent results. Such a direct formulation of the difference equa-
tions leads to an unsymmetric matrix, however, for which positive definiteness cannot
be readily established nor convergence of interative techniques assured.

4. Method of successive solutions. Consider a general, monotonically increasing
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CURVE OF SUCCESSIVE SOLUTIONS

Fig. 2.

stress-strain curve from the tensile test of a Hencky-Nadai material. The equivalent
stress a is related to an equivalent strain i by the equation

* = Ef@ (34)
where, in general, both E and the function / depend upon temperature. The iterative
solution of the general plasticity problem, represented by Eqs. (20) and (21), is ac-
complished with the aid of Eq. (34) by determining successively improved values of the
strain-dependent functions X* and G*. Assuming that the plastic strains in a given mate-
rial body can be anticipated as small and contained by regions of elastic deformations,
the elastic values X and G are chosen as the first approximations to X* and G* (hence, the
initial solution of the problem is that of the strain distribution in a linearly elastic body).
All equations are satisfied, with the exception of the stress-strain relation of Eq. (34).
Thus, this relation is used to obtain corrected values of X* and (?*, and a second solution
is carried out, corresponding to a fictitious, nonhomogeneous linearly elastic material
with modulus Ef (as depicted in Fig. 2). From Eqs. (4), (8), (10), (11), and (34), the
first and all subsequent corrections can be determined from the general equations

e»-i = i i1 * V|i(M,-.i +ui,i)ui,i - $(u*.t)2|»-i .

and

1 + V*.

e,
/(e.*-i)

- 1 > 0, (35)

E* = E * v + 0.5^„
1 + *, ' "" 1 +

r* =  E  x* _ (" + 0-5'K)E" 2(1 + ? + 1.5vO ' " (1 + v + 1.5^0(1 - 2v) '

(36)

where n indicates the nth correction to the elastic solution and v% = v. A relatively simple
analytical curve for representing the function /, suitable as an approximation to the true
stress-strain curve in tension of certain metals at moderate temperature levels, is given
by the equation

/(e) = (l - ff)eo tanh ̂  + Jf * (37)

with «0 and Er defined in Fig. 3. Eq. (37) is a modification of an analytical curve for non
strain-hardening materials suggested by Prager [26].
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Fig. 3.

Consider now the question of convergence of the method of successive solutions
defined by Eqs. (35) and (36). Restricting the Poisson's ratio of the material to the
physically significant range 0 < v < 0.5, X* and G* are positive and nonsingular, ap-
proaching finite limits as e increases unbounded. For the particular stress-strain curve
of Eq. (37), the limits are

lim * = §~ ~ 1
T

lim X* = {!-(!- 2v)Er/E]E
™ {3 - (1 - 2v)Et/E\(1 - 2v) ( >

lim G* = E T

3 - (1 - 2v)Et/E

Even for the most general monotonically increasing stress-strain curve, it is evident from
Eqs. (36) that X* and G* are always bounded:

X < X* < X
(39)

0 < G* < G.

It follows that the coefficients in the general difference equations of the plane strain
problem (Eqs. 32 and 33) are bounded above by the corresponding elastic values and
below by the limiting values related to infinite strain. The ranges are 2(1 — v)\/v —>
2(1 + x)X/(3f), E/( 1 + k) -> 0, and \/2v -» (1 + v)\/Qv) for {A* + A*), {G* + G*),
and (X* + (?*), respectively. (For a specific stress-strain curve with a finite upper limit
on such as Eq. (37), the lower bounds are increased slightly and the range is narrowed.)
Thus, the elements in the coefficients matrix [A] of Eq. (27) are bounded; and since this
matrix is symmetric and positive definite for any set of values X* and G* within the
physically attainable range above (Eq. 39), it has a unique inverse whose elements also
are bounded. Therefore, the displacement vector {5} is finite for any set of X*, G* evolved
from the elastic values through successive application of Eqs. (35) and (36), from which
it is concluded that the iteration cannot diverge unbounded.

To further consider the question of convergence, Eqs. (27), (35) and (36) can be
written in the functionally descriptive form

[A{Ux,y))]{Bn] = {8°} (40)
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The elements of [A(t^)] are bounded for all \J/ and, from Eqs. (32), (33) and (36), decrease
linearly with the function

8 =  ~ 'A.-i Pn (1 + v + 1.5£,)(1 + f + 1.5^,-0 ^ ;

The dimensionless rates of change with respect to \p of the functions X* and G* are, from
Eqs. (36),

_1 =  1  1 dG'■*   3 
E di ~ 2(1 + k + 1.5<A)2 ' E 4(1 + v + 1.5$2 '

which approach zero with increasing \p. (The incremental changes in X* and G* are pro-
portional to ft,.) Thus, if it is hypothesized that within a given problem \p increases
monotonically from zero over all the network points, the iteration will obviously con-
verge monotonically, following some curve of successive solutions (Fig. 2) for each un-
known displacement. However, it is certainly possible that, as the iteration approaches
the true solution, the values of \f/ will oscillate at certain points of the network. The
method of successive solutions will then either converge in an oscillatory manner, or
the displacement values will continue to oscillate within finite bounds, resulting in oscil-
latory divergence. Although such oscillation of solutions may not seem probable, it is
not obvious that a proof of convergence can be advanced in the general case.

5. Conclusion. From the minimum potential energy principle for small thermal-
mechanical strains of a Hencky-Nadai material, general quasi-linear field equations and
natural boundary conditions have been formulated, and a proposed method of suc-
cessive solutions has been presented. For plane strain problems, quasi-linear difference
equations have been obtained through minimization of the discretized total potential
energy function. It has been proved that, for a general boundary configuration and
arbitrary loading, the resulting coefficients matrix is positive definite for all physically
realizable values of the pseudo "material properties" X*, G*. The question of convergence
of the successive solutions method has been discussed, with a proof given that the itera-
tion cannot diverge unbounded and an argument for convergence set forth.

Appendix

From Eq. (15) the integral expression for 0 is

0 = — J l(G)(Ui,i + uiri)ui,j + Xe2] dll. (43)

Introducing a quadrature formula, as in Eq. (22), and differentiating with respect to
some uP\

sH g [sb++ sb |fe,|lAS- <44)
where RP represents the set of network elements surrounding point P.

From Eqs. (14) and (4) (again introducing t to denote the true state),

5[(?i(w',,- u',,)ul.,] = G*5[(u'j + m',,)w',,]
and
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«[K,(ui.0#] - (45)
with the corresponding equations from the finite-difference discretization expressible as

£-p [&«, +[«.,• +

and

£; =xf £; ^

Thus, substituting into Eq. (44) (dropping the notation t),

d$l 1
dup 2 Hp K"'.'+«'*'} +^YuP{ulk\ A R, (47)

from which it is seen that Q may be written

il = 5 E [(?*{(«{./ + Mj.iK-.i! + **ul,k\QARa (48)
R

if the functions G* and X* are taken as constant with respect to differentiation by uP.
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