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1. Introduction. Normal mode vibrations of coupled nonlinear systems of two or
more degrees of freedom have been the subject of extensive study in recent years [1-11].
Detailed results have generally been limited to the case of similar normal mode vibra-
tions where the wave shapes in the various degrees of freedom are proportional and
where the existence of these modal vibrations has been established. This case includes
the traditional normal mode vibrations of linear systems and also the vibrations of
certain highly nonlinear systems [2]. Nevertheless, it is rather special, and it is desirable
to have existence theorems for the more general nonsimilar normal mode vibrations [3, 4],

Since normal mode vibrations are select periodic solutions it would appear reasonable
to first establish the existence of various families of periodic solutions and then to single
out those which correspond to the normal modes. However, this has not been the ap-
proach previously adopted, and for a good reason, since it abrogates the principal
value derived from the introduction of normal mode vibrations. Normal mode vibra-
tions (in linear or nonlinear systems) are introduced mainly to uncouple the system
so as to allow for the explicit integration of the equations of motion [4, 5]. Admittedly,
only special periodic solutions are obtained, but the method provides for the type of
detailed study required in many engineering applications. This, typically, is not the
case when more general mathematical theories are applied to these problems. Also, in
practice these special periodic solutions depict the most important motions of the
systems studied and hence are of prime concern [2], Aside from all practical considera-
tions, the formulation and treatment of normal mode vibrations as a singular boundary
value problem [6] is of genuine theoretical (mathematical) interest.

In this paper we consider a number of existence theorems for periodic solutions of
coupled nonlinear systems of two or more degrees of freedom. These include normal
mode vibrations as well as other periodic solutions. We establish the existence of periodic
solutions of small amplitude which are near to linearized motions and we treat both the
critical and the noncritical cases, i.e., cases where the linearized frequencies are com-
mensurable and incommensurable. The method employed here has been used previously
[12] and exploits the symmetries of the system together with the classical implicit
function techniques. Alternative perturbational methods [13] could also be used but
the present one would seem to be very well adapted to this type of problem with its
special dynamics features. The results can be considered as contributing to the theory
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of normal mode vibrations only in the somewhat oblique fashion outlined above. It is,
perhaps, of some theoretical value to establish indirectly the existence of normal mode
vibrations of small amplitude, as done here, but the primary existence question remains
an unanswered and a challenging mathematical problem.

2. Preliminary concepts. We shall consider an idealized conservative system con-
sisting of n point masses (executing colinear displacements X,) which are anchored and
coupled by nonlinear springs. The equations of motion will be of the form

r)TJ
m,X',' = UXi = , (i = 1, 2, 3, • • • , n) (1)

where U is a potential function equal to the negative of the strain energy stored in
the springs. The system possesses the energy integral

T - U = h, (2)
where T = (1/2)^".i m,(X')2 and h is the constant energy level of a given motion.
We assume that the potential U is negative definite, is a function of the absolute value
of the length changes of the springs, and possesses continuous third order derivatives.
The coordinate space {(X! , X2 , • • • , Xn)} is called the configuration space, and for
a given energy level h > 0, all solution curves of the system in the configuration space
are confined to the interior of the surface —U = h (i.e., T = 0), called the bounding
surface. The bounding surface is closed, surrounds the origin, and is symmetric with
respect to it. We shall further assume that the linear approximation of the system (1)
can be completely uncoupled by a linear transformation and that the motion in each
of the uncoupled states is simple harmonic.

Consider now the differential equation (system)

z' = f(z), (3)

where z and f are 2n-dimensional (row) vectors. The differential equation (3) is said
to possess property E with respect to Q [13] if Q is an n X n (constant) matrix satisfying

f(zQ) = -f(z )Q (4)
for all z. Property E with respect to Q implies that the differential equation (3) remains
invariant under the substitution £—>—£, z —> zQ, and depicts certain symmetries of
the system. Let I denote the set of all (constant) 2n-vcctors a satisfying aQ = a. Then
I is called the lethargic set (set of fixed points) of Q. If T is a trajectory of (3) emanating
from the lethargic sot at time U which intersects the lethargic set at a future time t2 ,
then r is called an l-no7~mal trajectory. It is not difficult to show [12] that if (3) possesses
the usual existence-uniqueness properties for differential equations that an i-normal
trajectory is a periodic trajectory with half period equal to the elapsed time t2 — U .
If z is the usual phase space vector (Xx , X2 , • ■ ■ , Xn , X[ , X'2 , ■ ■ ■ , X'n) it is readily
seen that the system (1) possesses property E with respect to the matrix

Ql = diag (1, 1, • • • ,1,-1, -1, • • • , -1)
and that the corresponding lethargic set lx is merely the bounding surface, i.e., X[ =
X'2 = ■ ■ ■ = X'n = 0. Thus any solution curve in the configuration space which intercepts
the bounding surface twice is a periodic solution.
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Suppose there exist two constant matrices Qi and Q2 such that the differential equa-
tion (3) satisfies property E with respect to both. Let lx and l2 be the lethargic sets
associated with Q{ and Q2 , respectively, and assume that (lx)Q2 is a subset of h . Then
it is only slightly more difficult to show [12] that a trajectory which first intersects l2
and subsequently intersects h is a periodic solution of (3) with quarter period equal to
the elapsed time. Since the potential U is an even function of the spring displacements,
it follows that the system (1) also satisfies property E with respect to the matrix

Q2 = diag (-1, -1, • • • , -1,1,1, • • • ,1)

and that the corresponding lethargic set l2 is the origin of the configuration space, i.e.,
Xi = X2 = • • ■ = Xn = 0. Further, (h)Q2 = Zx and thus any solution curve in the
configuration space which intercepts the bounding surface and the origin is a periodic
solution. Of course, any solution in the configuration space which intercepts the origin
twice is also a periodic solution.

We note that these results imply that no solution curve in the configuration space
can (a) intercept the bounding surface at three distinct points, (b) intercept the bounding
surface and the origin without intercepting the bounding surface at two points, (c)
intercept the origin so as to form more than two loops. A solution curve which intercepts
the bounding surface at two points is a periodic solution which retraces itself each half
period. A solution curve (periodic or otherwise) passing through the origin in configuration
space is symmetric with respect to the origin. Solutions of (1) in the configuration space
which connect the bounding surface with the origin will be called BOB (boundary to
origin to boundary) periodic solutions. Periodic solutions of (1) which connect two points
on the bounding surface without passing through the origin will be called BB (boundary
to boundary) solutions. Periodic solutions of (1) which pass through the origin twice
without intercepting the bounding surface will be called 00 (origin to origin) solutions.

Normal mode vibrations have been characterized [4] as vibrations-in-unison of the
physical system. A spring-mass system is said to execute vibrations-in-unison if the
motion satisfies the conditions

(i) the mass points vibrate periodically with common period,
(ii) there exists a time at which all mass points simultaneously pass through

the origin,
(iii) there exists a time t2 ^ h at which all velocities simultaneously vanish, and
(iv) the position of every mass point at any instant of time is uniquely determined

by that of any one of them at the same instant.

Clearly, any BOB solution of (1) satisfies the first three of these conditions and may
or may not satisfy the fourth. However, every normal mode vibration is necessarily a
BOB solution.

3. General existence theorems. We assume a value for the energy constant h > 0
and consider all the motions of the system (1) corresponding to this (fixed) energy level.
Introducing the scaled variables

ut = h~l/2m\/2Xi ,

and a suitable linear transformation

Xi = F^Ux , u2 , • • • , un),
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we may write the equations of motion in the form

x't' = — Xjx, + h'^Pifa , x2 , ■ ■ ■ , xn , h), (i = 1, 2, • • • , n) (5)
where X,- > 0 are the linearized frequencies and P{ are continuously differentiate and
at least second order in the x{ variables. The exponent a > 1 is chosen so that not all
Pi vanish identically in , x2 , ■ ■ ■ , xn for h = 0. The energy integral may be written
in the form

I E (x[)2 + I £ + KnV(x, ,x2 , ■■■ ,x„ ,h) = 1, (6)
1=1 i=1

where V is at least second order in the x< variables.
For h = 0, the bounding surface becomes the ellipsoid

I £ = 1- (')
»=1

and the system (5) possesses n periodic solutions
2>/2

xv = —— cos X,t,
A, (8)

Xi = 0, i v

which generate the axes of this ellipsoid (V = 1, 2, ■ ■ • , n). If the frequencies X, are
incommensurable then these are the only periodic solutions. If the frequencies X, ,
v = 1,2, ■ ■ • ,k <n, are commensurable, then all solutions lying in the {(xi, x2, • • • , xk)}
hyperplane are periodic. The n periodic solutions (8) represent the linearized normal
mode vibrations of the system and we shall first determine conditions under which
these are members of a continuous family of periodic solutions for small values of h.

For v fixed, consider the ratios of the linearized frequencies Xi/X„ , where i ^ v,
1 < i < n. If no one of these ratios is an odd integer we shall say that the system (5)
is non-degenerate with respect to the frequency X„ . Whenever one or more of these
ratios is an odd integer, system (5) will be said to be degenerate with respect to the
frequency X„ . System (5) is further classified as partially or totally degenerate with
respect to X„ depending upon whether some, but not all, or all of these ratios are odd
integers.

Theorem 1. If the system (5) is non-degenerate with respect to the linearized
frequency X„ , then the periodic solution

21/2
xv = cos \vt, 0 < t < 7r/2X, ^

Xi = 0, i 9^ v

of (5) for h = 0 is the generator of a (unique) continuous family of BOB periodic solu-
tions for all sufficiently small values of the energy constant h.

Proof: In general, any solution of (5) for h = 0 which originates on the bounding
ellipsoid is of the form

Xi = £, cos X,*, (i = 1, 2, • • • , n) (10)

where the satisfy (7). For h > 0, any solution of (5) which originates on the bounding
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surface may be expressed in the form [14J

h"/2 r'
Xi = cos \,t + — / sin \i(t - s)Pi(x ,(y, s), x2(y, s), ■■■ , x„(y, s), h) ds,

A i J o

(i = 1,2, ,n) (11)
where the components of the initial vector y = (£i , £2 , • • • , £„) satisfy the equation
of the bounding surface. The solution (11) will be periodic if an initial vector can be
found such that for some time t* the equations

y) = 0, (i = 1, 2, • • • , n)
are satisfied. Consider the n + 1 equations

W(y) + h'/2V& , fe A) = 1,^ i-i
,*/2 -t*

x, = £„ cos\,t* + -r— / sin X„(i* — s)P„(xi(j, s), x2(y, s), • • • , z„(y, s), A) (is = 0, (12)
Ay J 0

h«/2 pf
Xi = Zi cos A,/* + —- / sin X,(/* - s)Pi(a;I(y, s), z2(y, s), • • • , z„(y, s), ft) ds = 0,

A,- Jo

(i = 1,2, • • • , v — 1, f + 1, • • • , n)

in the n + 1 variables £*,£„,£i , £2 , • ■ ■ , £„-i , £„+i ,•••,£„. For ft = 0, these equations
are satisfied by the initial vector y„ = (0, 0, • • ■ , 21/2/X„ ,0, • • • ,0) and the time =
ir/2Xp . Further, the Jacobian matrix of (12) for ft = 0, y = y0, and £* = ir/2X becomes

r i • Ioi/2\ 01/2 7T Ap—i 7r X„+i x X„ 7r\J = diag ^2 X, , —2 , cos — cos — - , cos — - , • • • . cos — -)

and its determinant becomes

|J| = -2X, ft cos^| , (13)

and is non-zero since (5) is non-degenerate with respect to the frequency X„ , i.e., the
ratios X,/X„ are not odd integers. Therefore, by the implicit function theorem, for all
sufficiently small values of ft there exists an initial vector y = y (ft) and a time t* = t*(h)
(unique for small ft), which satisfy Eqs. (12) and for which we have

y(ft) —> y0 , t*(h) —> -k/2\, as ft —> 0.

For each ft, the corresponding trajectory emanating from y(ft) on the bounding surface
passes through the origin at time f*(ft). These trajectories constitute the desired con-
tinuous family of BOB periodic solutions with generator (9).

We remark that for sufficiently small values of ft, the periodic solutions of Theorem 1
will also represent normal mode vibrations, since as ft —> 0 they converge uniformly for
all t to the linearized normal mode vibration represented by the generator (9). Also
we note that Theorem 1 includes many critical cases where some of the linearized fre-
quencies are commensurable.

Consider a case for which the system (5) is either partially or totally degenerate
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with respect to some frequency X„ of the linearized system. Then it may not be possible,
under all circumstances, to obtain a proof of the continuation of the corresponding
linear normal mode vibration. This is due to the fact that the determinant (13) vanishes
for h = 0 whenever any one of the frequency ratios, X./X, , (i ^ v) is an odd integer.
However, it is possible that other periodic solutions may be continued, provided the
perturbational parts of (5) satisfy certain conditions.

Theorem 2. Assume that the frequency ratios X,/X„ , (i = 1, 2, ■••,/*< y) are
not odd integers, but that each of the frequency ratios X,/X„ for j = n + 1, ■ ■ • , n is
an odd integer. Suppose further that there exists an initial vector y0 = (0, 0, • • ■ , 0, £„+i,
■ • ■ j ?») with £„ 5^ 0 whose components satisfy the equations

\ Z = 1, (14a)
& j-n+i

i r"= +7- 60S X,sP,(0, • • • ,0, £M+1 cos X„+iS, • • • , cos X„s, 0) ds = 0,
A j- Jo

0' 7* V, j = H + 1, ■ • • ,n) (14b)

where t* = ir/2X„ and

Ti = -5— [ cos X„sP„(0, • • • ,0, fM+i cos XM+1s, • • • , f„ cos X„s, 0) ds. (14c)
X„£» Jo

If the determinant of the matrix

= dx*
L dith .

(j, k = n + 1, • • • , n\ j, k ^ v) (15)

is non-zero then the periodic solution

Xi = 0, (i = 1, 2, • • • , n)
cos \jt, (j = m + 1, • • • , n), 0 < t < 7r/2X„

(16)

of (5) for h = 0 is the generator of a (unique) continuous family of BOB periodic solu-
tions for all sufficiently small values of the energy constant h.

Prooj: As in the proof of Theorem 1, it is sufficient to establish the existence of
an initial vector yl near y0 (on the bounding surface) and a time t* near ir/2X„ which
are solutions of the n + 1 equations (12). For h = 0, any trajectory emanating from
the bounding surface intersects the xv — 0 hyperplane at the time t = ir/2\r . Further,
the derivative x'v = dxjdt for h = 0, t — 7r/2X„ becomes — X„£„ and is not zero if £„ ^ 0.
Thus, by the implicit function theorem, for all sufficiently small values of h and for
initial vectors yl lying on the bounding surface with £„ bounded away from zero, there
exists a time t\ = /*(£i , ?2 , • • • , £„ , h), tending to 7r/2X„ as h tends to zero and con-
tinuously differentiable in (^ , £2 , • ■ • , £»), at which the corresponding trajectory in-
tersects the x, = 0 hyperplane. This time may be expanded in the form

<?=—; + h'/2T,(y, ,h), * = &,&,••• , U, (17)

and when it is substituted into the equation xt = 0 (j 5* v, n + 1 < ; < n) of (12)
the latter becomes
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X, = -T^foh"* sin^l
7<r/2 f*t i*

+ X" Jo sin X'^* ~ S)P^Xl(jl ' S)'

•x»(ji ,s),h)ds + h'Q.iy, , h) = 0. (18)
Here, sin (X,tt/2X,,) = ±1 and Q,- represents the higher order terms in the expansion
of cos X,(ir/2X„ + h°/2T-l) and is continuously differentiable in the components of y, .
With Xj = h"/2x*■ , (18) may be divided by h"2 and for yi = y0 , h = 0 becomes (14)b.
From the equation x, = 0 it follows that

1 r'-' hc/2
Ti(ji , h) = -2— / Sin X„(*t - s)P„(xi(yi , s), • • • , x„(y, , s), h) ds + — Qv{yi , A) (19)

AJo A„£„

which reduces to (14)c for h = 0 and y, = y„ . Now consider the n equations

^(y.) = I X x2?2 + r/2F(i,, • • • , |n, A) = i ,
t = i

,*/2

Xi = li cos X,/f + — / sin Xi(/f — s)Pi(x1(y, , s), • • • , xjjx ,s),h)ds = 0,
A i J o

(t = 1,2, ,m) (20)

xf = -T^l, sin ^ | + J- ^ sin X,-(/f - s)Pj(x1(y1 ,s), ■■■ , z„(yi , s), A) rfs

+ h'/2Qi(yi ,h) = 0, (j v;j = n + 1, ,n)

in the n variables |„ , |: , |2 , • • • , |*-i , |„+i , • • • , |„ where because of the choice of
<* = f*(|j , |2 , • • * , l» , h) we have z„(^) = 0 identically in & , |2 , ••*,!» (for yj on
the bounding surface and away from |„ = 0). For h = 0 and y! = y0 these equations
are satisfied, by hypothesis, and the Jacobian matrix of (20) becomes

X2|„ 0 0 • • • 0

0 cos ^ 0 •• • 0
A„ Z

0 0 :
J2 =

0

ITC0s X, 2

with determinant

\J,\ = X %
TT X, TV

J,

(21)

which does not vanish, by hypothesis. The implicit function theorem then guarantees
that for all sufficiently small values of h, there exists an initial vector yi = yj (h) (unique
for small h) whose components satisfy (20) with limA_0 Ji(h) = y0 • For each h, the
corresponding trajectory, emanating from yi(h) on the bounding surface passes through
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the origin at time t = <*(yi(/i), h). These trajectories constitute the desired family of
BOB periodic solutions with generator (16).

In general, the periodic solutions of Theorem 2 will not represent normal mode
vibrations unless the generator (16) does. However, it may happen that the hypotheses
of Theorem 2 are satisfied by an initial vector y0 , all of whose components vanish except
£„ . The generator (16) then represents one of the linearized normal mode vibrations
and the corresponding family of periodic solutions represent normal modes for small
values of h.

If the system is totally degenerate with respect to X„ then all of the linearized fre-
quency ratios A,/\„ , j = 1,2, • ■ ■ , n are odd integers. In such a case, fx is taken as zero
in Theorem 2 and J1, is an (n — 1) X (n — 1) matrix.

An Example. We shall now illustrate Theorems 1 and 2 by applying them to a
specific two-degree of freedom system. Consider the system illustrated in Fig. 1 con-
sisting of two mass points anchored and coupled by Duffing type springs with restoring
forces Si .

For h > 0, and it,- = h~ m\/2X; the equations of motion may be written in the form

dU
dlii '

(t = 1,2) (22)

where

U(u i , u2) =

Letting

ch + a3 Mi u{u2 . 02_+ a3
2 rrii a3 (m1m2)1/2

3 ul "I
m2 J

Mi_ j_ h. ( M' _ Ma V , ^2
4 m? 4 \(m1)1/2 (m2)1/2/ + 4 m22J

_ a 1 + q3 , a-3 _ a-2 + <>-:■,
CI f 0 , \l/2 » Crrii (mim2) m2

we introduce the (linearized, normal) coordinates

x, = —^— (yUl - u2),
y — o

x2 = ——— (8ui - u2),
o — y

Fig. 1. Spring-Mass System
S,(A'O = alXl + biXl , S2(X2) = a2X2 + h2X32

S3(A! , X,) = a3(A'! - Xt) + b3(Xl - X2y
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where
\2 \ 2_ CI Aj CI A2

7 =

X? =
a + c

2

,2 a + c ,
X2 - ~y~ +

(23)

(24)

Then the equations of motion become

x[' = -Xfri + hP 1 (^ 1 , x2),

x2 = — \\x2 + liP2{x 1 , x2),

where

P 1(^1 1 ̂ 2) = + Pixxx\ + qlxl

P2(x 1 , x2) = Z24 + n2xlx! + p2x2a;? + g2a;i ,

and Z,- , rit , p, , and q, are constants. Here we have assumed that the linear coupling
coefficient a3 ^ 0. If this is not the case, (22) is already in the normal form (24).

For h = 0, the system (24) possesses the periodic solutions
21/2

Xi = -r— cos Xit, x2 = 0, (25a)
Xi

and
21/2

Xi = 0, x2 = cos \2t. (25b)
A2

If the linearized frequencies Xj and X2 are incommensurable these are the only periodic
solutions, while if Xj and X2 are commensurable all solutions are periodic. If X2 (X2 > X^
is not an odd integer multiple of then the system (24) is non-degenerate with respect
to both X: and X2 . Thus, by Theorem 1 the periodic solutions (25) are the generators of
continuous families of BOB periodic solutions for small values of h. These will represent
in-phase and out-of-phase [3] normal mode vibrations.

If X2 = k\j with k an odd integer greater than one, then the system (24) remains
non-degenerate with respect to X2 and (25b) is the generator of a continuous family
of BOB periodic solutions for small values of h. (See Fig. 2a). However, the periodic
solution (25a) may or may not be the generator of a family of periodic solutions. We
turn to Theorem 2 for further information. In this special case we have n = 2, n = 0,
v = 1, a — 2, and (14b) becomes upon integration

„ . kit
tt£2 sin —

x* = [2p2 - 3kX)g + (3Z2 - 2k2Pl)£\ = 0, for k > 3 (26)i6/cxr
or

. 3tt
7r sin —

z*2 = 48X. [(2p2 - 27U)U\ - 9n&g + (312 - 18p,)g + q-£] = 0, for k = 3. (27)
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IWV
X2

■X|

a b
Fig. 2. BOB Periodic Solutions, X2 = 5Xi

Equation (26) (as well as (14a)) is satisfied by £, = 21/2/X! , £2 = 0. Thus if the quantity

w - (I?),
. Jewit sin —

2 (2p2 - 3k%),
/tl_2././x, 8k\\

£.-o

does not vanish, i.e., if 2p2 ^ 3&% , then (25a) is the generator of a continuous family
of BOB periodic solutions for small values of h and we again have both in-phase and
out-of-phase normal mode vibrations. Equation (26) will also be satisfied by the com-
ponents of an initial vector = (£, , £2) whenever (2p2 — 3k2U)£ + (3Z, — 2k2pl)£ = 0.
If for these components we have, further,

dx* sin y
,Jl1 = it = 8frX? (3?2 ~ 2/c2pi) ̂  °'

then the corresponding (off-axis) periodic solution is the generator of a continuous
family of BOB periodic solutions for small values of h. These will not represent normal
mode vibrations, however, unless |f2| is small (see Fig. 2b).

If k = 3 we conclude that the periodic solution (25a) will be the generator of a con-
tinuous family of BOB periodic solutions for h sufficiently small if q2 = 0 and 2p2 —
27Zi ^ 0. Further, if 2p2 — 27lx 9^ 0, then for \q2\ small there will be a continuous family
of BOB periodic solutions for small values of h, with initial vectors tending to the root
of (27) which is near the point (21/2/X! , 0). For sufficiently small values of q2 and h
these will also represent normal mode vibrations. Note that (25a) is not the generator
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of a continuous family of these periodic solutions if q2 9^ 0, since then the components
of (21/2/% , 0) do not satisfy Eq. (27). More generally, if £i(^ 0) and £2 satisfy (27)
and (14) a and if for these components we have

. 3ir
nT* 7r sm o

df = ~48XT [{2P2 ~ 27ll)^ ~ 18Wlfl£a + 3(3^2 ~ 18Pl)^21 ̂ °'

then the periodic solution

Xi = £i cos X^, x2 = £2 cos 3X,/, (28)

is the generator of a continuous family of BOB periodic solutions. One would not expect
these to correspond to normal mode vibrations unless the generator (28) does so. For
example, if |g2| is not small, the system (24) can not vibrate in the in-phase mode for
small values of hi

If k = 1, i.e., Xj = X2 , then necessarily a3 = b = 0 and a = c, which implies that
the system is symmetric and possesses no linear coupling. In this case we must revert
to the system (22) and it becomes necessary to employ Theorem 2 for both frequencies.
However, because of the symmetry we need only consider one degenerate frequency,
say Xj . As before n = 0, v = 1, <r = 2, n = 2 and, upon integration, (14)b becomes
(in the (wt , w2) coordinates)

= Sir
16A?£i

t4 1 (b, + 63 3b3 V3.
?1 + ~ m1m2)3/2 1/2 .Lrrii m2 \ mx mlm2

b3   bs ^2^2 i ( 363   b2 ~f~ b^\^ ^3   b3
+ 3 1/2 375^172 Ms + 1— iS 17™?\m2 m/ mi m2 / \m1m2 m2 / to/ m2

= 0, (29)

where & 5^ 0. Thus if the components of the initial vector u0 = ($1 , £2) satisfy (29)
and if for these components we have du*2/d£2 ^ 0, then the periodic solution

Mi = £1 cos u2 = £2 cos Xit, (30)

is the generator of a continuous family of BOB periodic solutions. These will represent
normal mode vibrations. In particular, for b3 = 0, (29) is satisfied by the components
of the vector U! = (21/2/Ai , 0) and we have

tdv?i\ = 3tt bx n
\3£2 /f,.2./vx, 8\\ml ^ U'

f.-o

provided b, 9^ 0. If 6, has the same sign as b2 , (29) is also satisfied by the components
of the initial vector

= (*'I y , TO2
U2 ~ Ul ' TOj

1/2

£l J = (£l ! £2)

where

=

and we have

X? 1 + TO2V b\_
mj b2_
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M _ 37rb2 2 „
sxfmj! ?2 ̂  '

provided &2 0.

Generalizations. Suppose that the linearized frequencies of system (24) satisfy the
relation X2 = (p/qwhere p and q are relatively prime odd integers. Then for h = 0,
this system possesses the BOB periodic solutions

x1 = & cos Xit, x2 = cos ^ X'|? + X2£2 = 2 (31)

with quarterperiod qir/2\1 , and it is quite possible that some of these are the generators
of continuous families of BOB periodic solutions of (24) for small values of h. This sug-
gests the following generalization of Theorem 2 which is proved using precisely the
same arguments.

Theorem 3. Assume that the frequency ratios X,/X„ (z = 1, 2, • • • , n < v) of the
system (5) are not ratios of odd integers but that for j = n 1, • • • , n we have X,/X„ =
Pi/li > where p, and g,- are relatively prime odd integers. Let q be the least common
multiple of the qt and assume that the components of the initial vector y0 = (0, 0,
• • • ,0, fM+i ,•••,£„) with £„ 0 satisfy Eqs. (14) with i* = qir/2\y . Then if the deter-
minant of the matrix (15) is non-zero, the periodic solution

Xi = 0, (i = 1,2, ■■■ , /j.)
Xj = £,■ cos (Pi/q,)\vt, 0' = ix + 1, • • ■ , n), 0 < t < qvr/2X„ (32)

of (5) for A = 0 is the generator of a (unique) continuous family of BOB periodic solu-
tions for all sufficiently small values of the energy constant h.

These periodic solutions, of course, will not represent normal mode vibrations unless
the generator (32) does. Generally, for large integers pt and g,- , the solution curves
for these periodic solutions in the configuration space are very complicated.

Theorem 3 remains valid if the least common multiple q is replaced by any odd
integral multiple of q. The corresponding BOB periodic solutions could, perhaps, be
called sub-harmonic oscillations. Similarly, Theorem 2 may be generalized so as to
include subharmonic oscillations merely by replacing the term 7r/2Xv in the expansion
(17) by any odd integral multiple of itself.

In each of the preceding theorems we have used two lethargic sets to establish BOB
periodic solutions. In the sequel we shall use a single lethargic set and investigate l-
normal periodic solutions which are generally not BOB solutions. We shall first con-
sider BB solutions, which emerge from and return to the bounding surface. These
include additional critical cases.

Theorem 4. Assume that the frequency ratios X,-/X„ (j ^ v; j = n + 1, • • • , n)
of the system (5) satisfy X,-/X„ = Pi/q,- , where p,• and qf are relatively prime integers.
(Here both even and odd integers are permitted.) Let q be the least common multiple
of the g; and assume that the frequency ratios X,-/X„ (i = 1, 2, ■ • • , n < v) are not of
the form k/q, with k an integer. Further, suppose that the components of the initial
vector y0 = (0, 0, • • • , 0, £M+1 ,•••,£„) with £„ ^ 0 satisfy (14) with t* = qir/\„ . Then
if the determinant of the matrix (15) is non-zero, the periodic solution

Xi 0, (i 1, 2, m'' , //) (33)

Xj = £,• cos\jt, (j = m + 1, • • • , n), 0 < t < qir/\.
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of (5) for h = 0 is the generator of a (unique) continuous family of BB (or BOB) periodic
solutions for all sufficiently small values of the energy constant h.

Proof: According to Eqs. (11), the velocity components of a solution of (5) originat-
ing at y on the bounding surface are of the form

x'j = —X ,£,• sin + h'/2 / cos X,-(* - s)Pj(x l(y, s), x2(j, s), , xn{y, s), h) ds,
Jo

(■i = 1, 2, ••• , n).

The solution (11) will be periodic if an initial vector y^ can be found such that for some
time t* > 0 the equations

yO = 0, (i = 1,2, ■■■ , n) (34)
are satisfied. For h = 0 the fth-velocity component x'„ of any trajectory originating on
the bounding surface vanishes at the time t = qir/\„ . Further, the derivative x'/ =
dx'Jdt for h = 0, t — qv/\, becomes — Xj|, cos qir and is not zero if £„ 0. Thus, by
the implicit function theorem, for all sufficiently small values of h and for initial vectors
yi lying on the bounding surface with £„ bounded away from zero, there exists a time
t* = t*(Zi > £2 , '-' j £» 7 h), tending to qir/\„ as h tends to zero and continuously dif-
ferentiable in £1 , £2 > • ■ • , , at which the yth-velocity component of the corresponding
trajectory vanishes. Further, this time may be expanded in the form

tS = ? + ,h), (35)

and when it is substituted into the equation x' = 0 (j ^ v, n + 1 < j < n) of (34)
the latter equation becomes

x'j = -T2\%h°/2 cos (pi/qDqv

+ h'n [ cos \,(t% - s)Pi(x1(yl ,s), ■■■ , xjji ,s),h)ds + h'Qj( yi , h) = 0. (36)
J 0

Equation (36) may be divided by h"2 and for h = 0, yx = y0 becomes (14b). From the
equation x' = 0 it follows that

1 r'°'
T2(yi , h) = 2 — / cos \,(t* - s)P,(Xi(yi , s), • ■ • , x„(yL , s), h)

ACOS QTT J 0
ds

+ x5^«-<y"',) (37)
which reduces to (14c) for h = 0, yx = y0 . Now consider the n equations

W(yO = § £ + h°/2V& A) = 1

= — X^j sin X,i * + h"/2 [ cos X,(/* - s)P,(a:1(y1 , s), • • • , x„(y, s), /i) ds = 0.
Jo

(t = 1,2, >M) (38)

x* = -T2\% cos (Pi/q,)qir + / cos X,(/2* - s)P,(x1(y1 , s), • ■ • , x„(yi , s), A) ds
Jo

+ h°/2Qj(y, , /i) = 0, (j 9^ v; j = m + 1, • • • , n)
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in the n variables • • • , £„-i , £,+i , • • ■ , , where because of the choice of
t% we have x[(t%) = 0 identically in these variables (for y, on the bounding surface
and away from £„ = 0). For h = 0 and y! = y0 these equations are satisfied, by hypothesis,
and the determinant of the corresponding Jacobian matrix becomes

i^i = (-im, TT \ *Ai sin — qir
1=1 Ay

\Jl\,

which does not vanish, by hypothesis. The implicit function theorem then guarantees
that for all sufficiently small values of h, there exists an initial vector ys = yj (h) (unique
for small h) whose components satisfy (38) with lim4^0 y^h) = y0 . For each h, the
corresponding trajectory emanating from y^h) on the bounding surface returns to the
bounding surface at time t = t*2(y1(h), h). These trajectories constitute the desired
family of BB (or BOB) periodic solutions with generator (33). It is clear that this result
is also valid for a system whose potential U may not be an even function of the spring
displacements.

The following theorem is concerned with the existence of 00 periodic solutions of
system (5) which emerge from and return to the origin. The proof is similar to that of
Theorem 4 and will be omitted.

Theorem 5. Let the frequency ratios A,/A„ (j = 1, 2, • • • , n) of system (5) satisfy
the hypotheses of Theorem 4. Further, suppose that the components of the initial
velocity vector v0 = (0, 0, • • • , 0, v„+l , ■ ■ • , vn) with v, ^ 0 satisfy the equations

1 = Z v) (39a)
i =m + 1

1 rQ1T/x' ( v v \
x*j = VjT3 — — sin XysPJ 0, 0, • • • ,0, r-^sin XM+1s, • • • , —sin X„s, 0 ) ds = 0

Aj Jo \ Am+i An /

0* ̂  v) j = m + 1, • • • ,n) (39b)
where

T3 = r—— f sin \„sPA0, ■ ■ ■ ,0, T^sin XM+is, • • • , — sin X„s, 0J ds. (39c)
AvVv J o \ '

J3 = 0', k = H + 1, • • • , n\ j, k 9^ v)

(40)

Then if the determinant of the matrix

~dx*
_dvk _j

is non-zero, the periodic solution

Xt = 0, (i = 1, 2, • • • , n)

V ■
Xj = ~ sin X,/, (j = m + 1, • • • , n), 0 < t < qir/X,

A,"

of (5) for h = 0 is the generator of a (unique) continuous family of 00 (or BOB) periodic
solutions for all sufficiently small values of the energy constant h.

Further Illustrations. We again consider the two-dimensional system (24) in order
to illustrate Theorems 4 and 5. If X2 = , for example, (14b) becomes upon integration

x* = - fit;[(27Zi ~8p^ + (18pi ~ 12y^] = °- (41)
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Thus, if 0) and £2 satisfy (41) and + f£2) = 2 and if for these components
we have

~ = Tr~\~ K27l> - + (54P> ~ 36k)&] * 0.Oq 2 lOAi

then the periodic solution

Xi = £i cos X^ ^

x2 = £2 cos §X^

of (24) for h = 0 is the generator of a continuous family of BB (or BOB) periodic solu-
tions for all sufficiently small values of the energy constant h. In particular, (41) is
satisfied by the components = 21/2/X1, f2 = 0, and the corresponding partial derivative
dx%/d%2 is non-zero if (27/, — 8p2) ^ 0. If the quantities (27/t — 8p2) and (54?^ — 36Z2)
differ in sign then there will be two additional off-axis generators (42), (see Fig. 3a).
Similarly, in this case (39b) becomes

_ Hi
^2 — \5

= 0. (43)
X?

Thus, if ^ 0) and v2 satisfy (43) and v\ + v\ = 1 and if for these components we have

dx* _
(9^2 x; \u- §P^vi + (|pi - §]&4 ^ 0,

a b
Fig. 3. BB and OO Periodic Solutions, 2X2 = 3Xi
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then the periodic solution

V\ . - . ■**-.. /a A\Xi = — sinA^, x2 = 57-sinfXi t (44)
Ai 0A1

of (24) for h = 0 is the generator of a continuous family of 00 (or BOB) periodic solu-
tions for all sufficiently small values of the energy constant h. In particular, (43) is
satisfied by the components Vi = 1, v2 = 0 and the corresponding partial derivative
dx%/dv2 is non-zero if (27ZX — 8p2) 5^ 0. If the quantities (27— 8p2) and (3— 2lt)
differ in sign, then there will be two additional off-axis generators (44), (see Fig. 3b).

A non-existence theorem. As the two-dimensional example illustrates, each of
the four existence theorems 2 to 5 leads to a corresponding non-existence theorem.
These are given collectively below and follow readily from the earlier proofs.

Theorem 6. If the linearized frequency ratios Ay/A, (j = n + 1, • • • , n\ n < A)
of the system (5) are rational numbers, then (a) the periodic solution

Xi = 0 (i = 1,2, ■■■, m)

Xj = ?, cos Ajt, (j = n + 1, • • • , n)
(45)

of (5) for h = 0 can be the generator of the continuous family of BOB or BB periodic
solutions given in Theorem 2, 3, or 4 only if the components £,• of the initial vector
satisfy (14)b with the appropriate <*; (b) the periodic solution

Xi = 0, (i = 1, 2, • • • , ju)

V ■
Xi = 7- sin A jt, (j = ju + 1, • • • , n)

i

(46)

of (5) for h = 0 can be the generator of the continuous family of 00 periodic solutions
given in Theorem 5 only if the components u,- of the initial velocity vector satisfy (39)b.
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