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SOME SOLUTIONS OF A NONLINEAR DIFFERENTIAL
EQUATION OF HIGH ORDER*

BY

P. E. W. GRENSTED

University of Cambridge

Abstract. Some exact monotonic, and approximate oscillatory, solutions of the
nonlinear equation d"y/dxn = K \y\r sgn y, 0 < r, are derived. The coefficient K may
be positive or negative, r may be non-integral and n is any positive integer. For the
case r = 0, exact solutions in closed form are obtained. The conditions under which
the approximate solutions will be highly accurate are discussed. Every component of
the general solution of the linear equation cTy/dxn = Ky is shown to be analogous to a
corresponding solution of the given nonlinear equation.

1. Introduction of equation. Equations of the type

= K |2/|rsgn y, 0 < r ^ 1, (1)

sometimes occur in applied mechanics. Two examplesf are quoted here: If n = 4 and
K < 0, equation (1) governs the bending moment y at a distance x along a uniform beam
embedded in a linear elastic medium. The material of the beam is such that the curvature
of the beam is proportional to the r-th power of the bending moment. Conversely, if y
represents the transverse deflection of the beam, the equation applies to a linear beam
embedded in an elastic medium whose local deflection is proportional to the (l/r)-th
power of the local pressure.

The second example is taken from a problem in the theory of optimal control. A
plant, with transfer function l/s", has output v(i) and a control input u(t) which is
subject to the saturation constraint |w| < 1. The governing equation of the plant is
therefore

cTv , .
dtm U^'

The desired output of the plant is zero. For any given initial state of the plant at t = 0,
it is required to find the u(t), and the corresponding trajectory of the plant state, that
will minimize the integral of squared error, namely /" v2 dt. It can be shown [1], by
application of Pontryagin's maximum principle, that the required trajectory is given
by the solution of

/72m
= -(-l)msgn y, (2)

where v = dmy/dtm, with the boundary conditions that y and its first 2m — 1 derivatives
become zero at t = + , and that v and its derivatives correspond to the given state
of the plant at / = 0. Equation (2) is an example of (1) in which r = 0.

*Received February 24, 1965; revised manuscript received December 13, 1965.
fDue to F. A. Leckie and A. T. Fuller respectively. Private discussion.
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An explicit general solution of (1) is not known, but certain special exact and ap-
proximate solutions can be derived. These solutions have the property that y{x) either
converges to or diverges from zero as x increases, or is periodic. It will be shown that
these special solutions of (1) are analogous to each of the modes of the solution of the
linear equation

g = Ky. (3)
The solution of (3) may be written

y = Z Ake»*, (4)
where the pk (k = 1, 2, • • • n) are the n roots of pn = K. If pk is real, the corresponding
term in (4) is divergent monotonic or convergent monotonic if pk > 0 or pk < 0 respec-
tively. If pk is complex, the two terms in (4) corresponding to pk and pk combined into
a single term which is divergent oscillatory, periodic or convergent oscillatory if Re pk > 0,
Re pk = 0 or Re pk < 0 respectively. By considering the location of the roots of pn — K
in the complex plane, it can be shown that, for given n and sign of K, the number of
modes of each of the five types which make up the solution of (3) are as set out in Table 1.

The object of the following is to derive solutions of (1) corresponding to each mode
of the solution of (3), and having the same properties, viz convergent, divergent or
periodic, and oscillatory with two arbitrary constants or monotonic with one arbitrary
constant. Solutions of these types are already known [1] for the particular case n = 6,
r = 0 and K > 0.

In the following three sections, monotonic, periodic, and oscillatory solutions of (1)

TABLE 1
dny

Type and number of the modes of the solution of — = Ky
dxn

n
(;v = 0, 1, 2, ...)

number of distinct modes

monotonic, with one
arbitrary constant

convergent divergent

oscillatory, with two
arbitrary constants

convergent periodic divergent

K > 0

4p + 1
4p + 2
4p + 3
4 p + 4

V
V

p + 1
V

Up + l
4 p + 2

K < 0 4p + 3
[4p + 4

V
P
V

V + 1

V
V

p + 1
p +1

Corresponding solu-
tions of equation (1)

r > 1
r < 1

(15)
(11)

(11)
(15)

(33)
(35)

(22)
(22)

(35)
(33)
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are derived. Their form depends on a parameter q, where

n
1 - r 'q = y— t 0 < r * 1. (5)

It may be noted that

q > n if r < 1; g < 0 if r > 1. (6)
2. Monotonic solutions. Substitution of

y = ^4(x0 - re)", x < x0 , (7)

into (1) yields

(-)nAq(q - l)(g - 2) • • • (g - n + l)(z0 - x)"'n = K \A\r (x0 - x)qr sgn A. (8)

Equation (8) is satisfied identically only if q is given by (5) and

A = ±[(-)"?(<? - 1 )•••(?-»+ l)/if],/('-1,I (9)

with the expression in square brackets positive. Using (6), it follows that (8) can be
satisfied only if

either K > 0, n even,

or K > 0, n odd, r > 1, (10)

or K < 0, n odd, r < 1.

Hence, provided one of conditions (10) holds, (1) has solution

y = A(xo — x)n/a~r\ x < x0 , (11)

where x0 is arbitrary and A, which is of arbitrary sign, is given by (9) and (5). Solution
(11) is divergent monotonic if r > 1, and is convergent monotonic if r < 1.

Similarly

y = A(x — x0)", x > x0 , (12)

satisfies (1) only if q is given by (5) and

A = ±[q(Q - 1) ■ ■ ■ (g - » + 1 )/K]w^\ (13)

with the expression in square brackets positive; i.e.

either K > 0, n even,

or K > 0, n odd, r < 1, > (14)

or K < 0, n odd, r > 1.

Hence, provided one of conditions (14) holds, (1) has solution

y = A(x — xoy/(1~r), x > xQ , (15)

where x0 is arbitrary and A, which is of arbitrary sign, is given by (13) with (5). Solu-
tion (15) is divergent monotonic if r < 1, and is convergent monotonic if r > 1.
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Solutions (11) and (15) of (1) correspond to all the mono tonic modes listed in Table 1.
3. Periodic solutions. Periodic solutions of (1) may be found approximately by

the method of equivalent linearization [2], In the present application this method be-
comes equivalent to Galerkin's method, to the describing function method and to the
method of harmonic balance [2]. Here, we assume a periodic solution of the form

y = A sin (yx + <j>), A > 0, (16)

and replace the right hand side of (1) by a linear term K'y. The coefficient K' is chosen
to minimize the mean square error of the right hand side of (1). Thus

jT (.K |2/|r sgn ?/ — K'y)2 dx = 0, (17)

where y is of the assumed form (16).
From (17) we obtain

K' = A-'crK,
where

2r(r-±-^
4 rT/2 , \ 2

cr = — I sinr+ u du =   -• (18)

Result (18) is in agreement Avith the describing function given by Greif [3]. Values of
cr for 0 < r < 2 are given in Table 2. The table can be extended by using the recurrence
relation

c'+»=|Hjric" (19)
which follows from (18).

The approximate form of (1) is

g = A"lcrICy. (20)

The assumed form (16) of y will satisfy (20) if, and only if,

either n = 4p + 4, K > 0,1

or n = 4p + 2, K < 0.
(p = 0,1,2, ■•■) (21)

TABLE 2
Values of cr defined by (18)

0 1/4 1/3 1/2 2/3 3/4 1
1.27324 1.18523 1.15960 1.11284 1.07119 1.05201 1.00000

5/4 4/3 3/2 5/3 7/4 2 r > 2

0.95490 0.94115 0.91531 0.89147 0.88021 0.84883 —cr_2r + 1
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If either of conditions (21) holds, a solution of (1) is approximately

y = A sin (yx + <£), (22)

where A (A > 0) and <f> are arbitrary, and

7 = I KCrA-1?'". (23)
Approximate solution (22) of (1) corresponds to all the periodic modes listed in

Table 1.
4. Convergent and divergent oscillatory solutions. Let

y = (x - Zo)"/<1~r)?7, x > x0 , (24)

and

x — x0 = e . (25)

On applying these changes of variable, (1) becomes

(£ + ?)(^ + q ~ 0 [fe + 9 ~ n + O" = K WTsfsa v' (26)

where q is defined by (5).
Periodic solutions of (26), of the approximate form

7,(6) = A sin (fid + <t>), A > 0, (27)
may be found by the method of equivalent linearization. Following the procedure
used to find periodic solutions of (1), the right hand side of (26) is replaced by A'~1crKi].
The resulting linear equation is satisfied by (27) if, and only if,

0'<3 + g)(i/3 + q ~ 1) • • • (jP + q — n + 1) = Ar~lcrK. (28)

Values (3m (/3„ > 0) of 0 which satisfy (28) must be such that the left hand side of (28)
is real, and of the same sign as K. Since the angle of each factor on the left hand side
of (28) lies between 0 and ir/2 if r < 1, and between ir/2 and ir if r > 1, this condition
may be expressed as follows. If

either K > 0, n even,

or K > 0, n odd, r < 1,

or K < 0, n odd, r > 1,

(29)

then

If

T. tan 1 = 2wtt (m = 1, 2, ••• M). (30)

either K < 0, n even,

or K < 0, n odd, r < 1,

or K > 0, n odd, r > 1,

(31)
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then

^2 tan 1 Pm
q - s = (2m — 1)tt (to = 1, 2, • • • M). (32)

Each of the n terms of the sums in (30) and (32) can contribute an angle of between
0 and 7r/2. Hence the total number M of distinct values /3m (fim > 0) satisfying (30)
or (32) is the greatest integer less than n/4 or (n + 2)/4 respectively. All the solutions
of (30) and (32) are shown in Fig. 1 for n < 8, 0 < r < 5.

Approximate oscillatory solutions of (1) are thus, from (27), (25) and (24),

y = (x — xoy/a~r) Am sin log (x — x0) + 4>], x > x0 , (to = 1, 2, • • • M) (33)

where x0 and <j> are arbitrary constants, j3m (/3m > 0) is a root of (30) if one of conditions
(29) holds or a root of (32) if one of conditions (31) holds, and, from (28),

= |Gft. + q)Oft + 9-1)-" Oft + q~n + 1 )/(Kcr)\1/"~1) (34)
where q = n/( 1 — r).

It is easy to verify that the number M of approximate solutions (33) corresponds to
the number of divergent oscillatory modes listed in Table 1 if r < 1, and to the number
of convergent oscillatory modes listed in Table 1 if r > 1.

A further set of oscillatory solutions of (1) can be derived by noting that (1) is
unchanged if x is replaced by 2z0 — x and K by ( — )nK. Making these changes in (33)
and conditions (29) and (31) we obtain approximate solutions of (1):

y = (x o — x)n/ll~r'lAm sin [/3m log (x0 — x) + <t>], x < x0 , (m = 1, 2, ■■■ M) (35)

EQN.
(32)

2 3 4 5
r

Fig. 1. All solutions of (30) and (32) for 0 < r < 5 and n < 8. pm = |s| tan (ira/n), where a is ordinate.
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where x0 and 0 are arbitrary constants, Am is given by (34) and j3m is given by (30) if

either K > 0, n even,

or K < 0, n odd, r < 1, (36)

or K > 0, n odd, r > 1;

alternatively /3m is given by (32) if

either K < 0, n even,

or K > 0, n odd, r < 1,■ (37)

or K < 0, n odd, r > 1.

It is easily verified that the number M of approximate solutions (35) corresponds
to the number of convergent oscillatory modes listed in Table 1 if r < 1, and to the
number of divergent oscillatory modes listed in Table 1 if r > 1. Thus the solutions
(33) and (35) correspond to all the non-periodic oscillatory modes listed in Table 1.

5. Accuracy of periodic solutions. We now consider the accuracy of the periodic
solution (22) of (1). If (22) is regarded as a first approximation yt to the true solution
of (1), we have

yi = A sin (yx + 0), (38)

where A is related to y by (23).
An improved approximation y\ can be obtained by substituting yx into the right

hand side of (1):

= K |?/i |r sgn V\ • (39)

On expanding the right hand side of (39) as a Fourier series, we obtain

= #-4"cr[sin (yx + <j>) + X) K,. sins(ya; + 0)], (40)
a-3. 5.7 -•••

where

4 r/2
Crhr,. = ~ / (sin u)r sin su du (41)

7T J 0

and cr is given by (18). It can be shown from (41) that hr,, satisfies the recurrence relation

S — T
h'->+* = s + r + 2 hr'' ' s odd' (42)

with hr, 1 - - 1.
Since y\ is periodic and n is even, we obtain by integrating (40) and using (23)

/? = A sin (yx + <t>) + ~ sin s(yx + <f>) (43)

The improved approximation (43) is equal to the first approximation plus harmonic
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terms. The relative magnitude of these harmonic terms is a measure of the error with
which the approximate solution (38) satisfied the original equation (1). This relative
magnitude can be measured as e, where e2 is the ratio of the mean square of the harmonic
terms to the mean square of the fundamental term in (43). Thus

= Z (VT- (44)
8™3,5.7. • •• No/

We now assume (without proof) that, if e is very small, the iteration procedure used
above, if repeated, would rapidly converge to the exact solution of (1), and that e is
then also a measure of the error between (38) and the exact solution of (1). For given r,
e decreases rapidly as n increases. For instance, if n — 2, and r = 0 or r = 3, then e —
1/27; if n — 4, and r = 0, or r = 3, then e — 1/243. For 0 < r < 3, these values of e
suggest that frequency y will be related to amplitude A by (23) to within about 3%
if n = 2 and to better than 1% if n > 4.

This conclusion is readily confirmed for n — 2 by a numerical comparison of (23)
with the exact relation

7 = fj2?rt/)]1/2 (-KA'-y2 (45)
(o + 7yC2/(i + r)

Equation (45) has been derived from the exact relation between period and amplitude
given, for instance, by Kauderer [4]. Moreover, for 0 < r < 3 at least, and n = 2,
there is also excellent numerical agreement between (43) (with (23)) and the exact
periodic solution of (1) given by Rosenberg [5] in terms of incomplete Beta functions.

If derivatives of y are required to the same accuracy as yx , solution (43) should
be used.

Exact periodic solutions when r = 0. If r = 0, solution (43) with (23) is an exact
solution of (1), for in this case the right hand side of (39) is unchanged if yi is replaced
by y*x . Thus, for r = 0, n even and sgn K = (—)n/2, the exact periodic solution of (1) is

= X "irrr sin s(yx + <t>), (46)
Try

where <j> and y are arbitrary.
We now derive (46) in closed form. If r = 0, the right hand side of (1) will be constant

in any interval in which y does not change sign. By direct integration of (1) we obtain,
during such interval,

y(x) = X rr y(k)M(x - x0)\ (47)
A-0 ft*

where x0 is arbitrary provided x = x0 is within this interval. Suppose x = x0 is chosen
to be at the centre of the interval. Then, from (46), yx0 + $ = (iV + %)n, where N
is integral. By differentiating (46) at x = x0, we now obtain

(-)V(Zo) =
(-)'/2 £ ( 111'-"72 , if k = 0, 2, 4,

Try .-1,3,5,••• S (48)
0, if k odd.

Now, if En is Euler's number of order n (E0 = Ex = 1, E2 — 5, E3 = 61, Et = 1385,
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• • •), it is known [6, 7] that
*+2 f 1 1 i

(49)En 2
(2 n)\ tt2"+1

! 1_ , _i 1_ .J- 02n+l r2n+1 iy2n+l

Applying (49) to (48) and substituting the resulting closed form of y'k) (x0) into (47),
we obtain as the exact periodic solution of (1) when r = 0, n is even and sgn K = (—)n/2,

KX
y = ± nl

x — x0 "C2 E■hf-T
+ nc4 *-■■■ + {-y/2En X > \x — x0\, (50)

where, for convenience, y has been replaced by the quarter period X = ir/2y, and
"Ck is the binomial coefficient n\/[(n — fc)! 7c!].

In (50), x0 , X and the ambiguous sign are arbitrary. Solution (50) is valid for a
half period. It is repeated by alternate positive and negative half cycles outside the
range X > \x — x0\. The maximum A* of y occurs at x = x0, and is, from (50),

A* = |£| X". (51)nl

Alternatively, by chosing x0 such that yxa + $ = Nir (N integral), it can be shown
simiarly that the exact solution of (1) when r = 0, valid for a half period, is

V = b(2'~'nl V 2X ) L2! (n — 1)! V 2X / 4! (» - 3)!
(x - x0Y 3 , W2 2" - 1 fx - x0\ , x0 < x < x0 + 2X, (52)

where the half period 2X and x0 are arbitrary. The B„ are Bernoulli's numbers (5, — f,
B2 = -jVj B3 = -4V, B4 = tto, • ■ •)• The result [6, 7]

B _ (M12 1 + + 72^ + ^ +3 5 7(2 - 1)t
has been used in the derivation of (52).

6. Accuracy of converging and diverging oscillatory solutions. The accuracy of
solutions (33) and (35) depends on the accuracy of the periodic approximate solution

Vi = Am sin (/3„0 + 0) (53)

of (26), where /3m is given by (30) and (32) as appropriate, and Am is given by (34).
Regarding rh as a first approximation to the true periodic solution of (26), we obtain

an improved approximation ^ by substituting ^ into the right hand side of (26):

(£ + q)(£ + q - 0 "' (£e + q ~ n + ̂
= KAnmcr hr,. sin s(fim6 + <f>), (54)

« = 1,3,5. •••

where cT is given by (18) and hr>, by (42).
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Integrating (54) yields

17=5 = Im
<-1,3,5,

A (i&m + g)0'/3,n +?-!)••• (j(3m + q - n + 1) ,-.(P.»+*)
. "* 0's/3m + g)(M» + g - 1) • • • (;s/3m + q - n + 1) r,s

(55)
using (28).

If e is a measure of harmonic content, defined as before, we have from (55)

= V <& + <!*>&• + ^ - ^ •••(& + (y - " + I)2)
.-3,5,7,••• (s2/?™ + q2)(s2fi2m + (q — l)2) ■ • • (s'fit, + (q — n + l)2)

If 0 < r < 3, and the smallest,6m is selected in each case, it is found that e < 0.02 if
n < 8 and e < 0.04 if n < 16. If alternative values of /3„ are selected, e is reduced in
each case. These figures suggest that amplitude Am and frequency j8m are determined by
(34) and (30) or (32) within at least 2% or 4% when n < 8 or u < 16 respectively
and 0 < r < 3.

Using the changes of variable (24) and (25) we obtain from (55), an improved ap-
proximation for the solution of (1), which is most conveniently written in the form

_ t™ y a O'ff- + <?) (jp~ + ? — !)••• (jPm + q — n + l)
m (jsPm + q)(jspm + q ~ 1) • • • (jspm + q - n + 1)

X K,s(x - x0x > x0 . (57)

The first term of the sum in (57) is identical with the approximate solution (33). Ex-
pression (57) should be used if derivatives of y are required to the same accuracy as
(33).

The improved approximation of solution (35), valid for x0 > x, is identical to (57)
with x — x0 replaced by x0 — x.

Exact converging and diverging oscillatory solutions when r = 0. When r = 0, the
improved approximate solution (55) of (26) can be written

v*(g) = — Im ^12 s(i + j8/3m)(2 + jsfim) ■ ■ ■ (n + js/Sj' (58)

On substituting (58) into (26) with r = 0, it is evident that (58) is an exact solution
of (26) if (0m > 0) is chosen so that 7)^ = 0 and dtf/dO > 0 when /3md + <j> = 2Ntt
(N integral). Let the modified values of f}„ which satisfy this condition be denoted by /3* .

From (24) and (25) the corresponding exact solution of (1) is

^ M t V  (* ~ xnr+t«"'e'«  /Kfrt
V X 7T m s(l + js/3*) (2 + js/3*) ■■■ (n + js/3*)

Also, from (24) and (25) we have

jjf = 0 and sgn drfl/dO = sgn ya\x) when y = 0. (60)

Hence, if x = x0 + X is a zero of y, @* can be obtained from the conditions

y(x0 + X) = 0 and yll)(x0 + X) > 0 when 2-Nir = /3*0 + <f>, (61)

where X = es, a constant. Now, from (61)

X"fm'e"* = 1. (62)
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Hence, by differentiating (59) at x = x0 + Ar, we obtain

. <*Y 4- in = ^ T V   
'To Tr m «(1 + is/3*)(2 + is/3*) • • • (n — k + js/3*)

(k = 0, 1,2, n - 1), (63)
where /S* (/3* > 0) is such that, in (63),

ym(x0 + X) = 0 and yw(x„ + X) > 0. (64)

Expressions (63) are now converted into closed form. If the right hand side is expanded
into partial fractions we obtain

y

The series expansion

<i)/ , Y\ — — V V ( — \h — k Mj- /Rr\
( 0 + } tt ( } hi (n - A - h)l (h2 + s2/3*2)' (65)

tanh u = 8u 1 , I  ,  I +
I n 2 , < 2 T or 2 . A 2 1\_7r + 4«2 1 9x + 4u* ' 25tt + 4m" (66)

can be derived by replacing u by ju in the corresponding better known expansion [6, 7]
for tan u. With u = > expansion (66) may be applied directly to (65) with the
order of summation reversed, to yield

yw(x„ + X) = fcj, F„-t(pm) (ft = 0, 1, 2, • • • n - 1). (67)

where

= e'^' (68)

and

f.-(p) = £ (-)* -C, 4^4 (< = 1, 2, • • •)• (69)
A-1 P + i

Since £j_o (~)' 'C* = 0> an alternative form of (69) is

^(p) = -2 ± (-)" —J— (< = 1, 2, • • •)• (70)
A-0 1 T P

A further alternative form of f\(p) is given in the Appendix.
Conditions (64) applied to (67) show that pm is any root of

Fn(p) = o (71)

such that

KFn^(pm) > 0 and p„ > 1. (72)

The condition pm > 1 is necessary and sufficient to ensure j3* > 0, from (68).

Now, if (1) is integrated during an interval in which y is positive, we have in terms
of initial conditions at x = x0 + X

y = (x - x0 - xy + zh vwb° + X^x ~x<>- x)' (73)n\ k\
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On substituting from (67), we obtain finally, as an exact solution of (1) when r = 0,

KXn

y = ±~^r (-—^1 + nc2F2(Pm)(x XJ 2

x0 + X < x < x0 + pmX, (74)
x — x„ — X

ni

+ ■ ■ ■ + nCn-xFn^{Pm)

where X and x0 are arbitrary. The following notes explain certain features of solution (74).
(a) In (74) the ambiguous sign has been introduced to allow for an interval in which

y is negative.
(b) The F< are defined by (69) or (70); pm must be determined from (71) with (72).

For n < 8 all the required values of pm and F, (pm) (i < n) are given in Table 3.
(c) From (68), (58) and (25), zeros of y occur at x = x0 + X, x0 + pmX, x0 + p,2nX,

Hence pm is the ratio of the length of an interval between successive zeros to the length
of the previous interval between successive zeros.

(d) A corollary of note (c) is that during the r-th interval following that for which
(74) is valid, y is given by the right hand side of (74) multiplied by (—l)|r| and with X
replaced by p„X. This defines the solution completely for x > x0 (r may be negative).

The above derivation applies for diverging oscillatory solutions of (1) when r = 0.
The corresponding result for converging oscillatory solutions is obtained by replacing
x — x0 by x0 — x in (74) and K by (— )"K in (74) and (72). The notes following (74)
also apply, provided x — x0 is replaced by x0 — x and the words "following" and "pre-
vious" are interchanged. It will be noted, from (71) and (72), that the pm are the same
for converging and diverging oscillatory solutions if n is even, but are different if n is
odd.

The accuracy of approximate solutions (33) and (35) when r = 0 is illustrated by
the remarkable agreement between values of e'/|S™ and ew/l3m (= Pm), as shown in Table 3.

7. Superposition of solutions if r < 1. The solutions (15) and (33) are not defined
for x < x0 , and the solutions (11) and (35) are not defined for x > x0 . For all these
solutions it may be verified that, if r < 1, y and its first n-1 derivatives become zero
as x approaches xn . Now, y = 0 is also a solution of (1). Hence, if r < 1, the range
of solutions (15) and (33) may be extended by taking y = 0 for x < x0 , and the range
of solutions (11) and (35) may be extended by taking y = 0 for x > x0 . Furthermore,
the sum of a converging solution and a diverging solution, each so defined for all x,
will also satisfy (1) provided they are not both non-zero at any x.

The following is a simple example in which solutions may be superimposed. A light
uniform beam of length L is simply supported at each end. The beam is loaded at each
end by a tensile force P acting along the line joining the supports. The material of the
beam is such that the curvature of the beam is kM1/3 (independent of the local tension),
where M is the local bending moment. Hogging moments M1 and M2 are applied at
each support.

It is easy to show that M satisfies

d2M
dx2

= PkM , (75)

with boundary conditions M — Mx at x = 0 and M = M2 at x = L. It can be verified
directly that a solution of (75) which satisfies the boundary conditions is
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M =

(MY3 - ax)3, if ax < M\/z,

0, if M\/3 < ax <aL - Ml

lM* — L) + MY3]3, if aL - MY3 < ax,
where a = y/(kP/6), provided

aL > MY3 + MY3. (76)
This solution is made up from (11) and (15) in non-overlapping ranges of x, and con-
nected by the solution M = 0. If the ranges overlap, i.e. the beam is too short to satisfy
(76), then a different form of solution must be expected.

8. Summary of results. The following special solutions of dny/dxn = K\y\r sgn y
have been derived. Exact solutions (11) and (15) are for converging and diverging
monotonic modes. Approximate solution (22) is for a periodic mode, with (43) as a
refined approximation. If r = 0, the refined approximation (43) for a periodic solution
is exact, and is given in closed form by (50) or (52). Approximate solutions (33) and
(35) are for diverging and converging oscillatory modes; a refinement of these solutions
is given by (57) and a modified form of (57). If r = 0, diverging oscillatory modes are
given exactly by (74) and converging oscillatory modes by a modified form of (74).
For n < 8 and 0 < r < 3, all the approximate solutions are expected to be accurate
within about 2%.

The number of distinct solutions of each type (converging monotonic, diverging
monotonic, periodic, converging oscillatory, diverging oscillatory) depends on n and
the sign of K, but not on r, and is the same as in the linear case r = 1 as shown in Table

TABLE 3
All roots pmCpm > 1) of Fn(p) = 0 (n < 8) and the corresponding values of Fi(pm) (i < n)

2.57855 4-07538 5.55607 1.41579 7.03823 1.73647
Pm 2.61803 4.13016 5.60796 1.41635 7.07175 1.73691

105 F,(p„) -44721.4 -61014.9 -69733.5 -17230.7 -75222.2 -26924.8
106F2(p») -14907.1 -33105.0 -45630.4 -993.648 -54365.3 -3639.93
106 F3(pm) 0 -13471.4 -26563.2 776.941 -36865.2 1906.02
106F4(Pm) - 0 -11606.3 340.158 -22238.1 1965.11
106 Fi(pm) 0 0 -10068.5 889.033

eT'"» 8.52651 2.00816 1.19903 10.02203 2.24972 1.35085
Pm 8.52851 2.00832 1.19906 9.98125 2.24960 1.35086

105fi(P„) -79010.3 -33517.8 -9051.95 -81787.1 -38453.9 -14924.8
106f2(pm) -60733.1 -6770.44 -147.134 -65561.8 -9907.40 -650.411
105 Fz(pm) -44846.4 2219.35 137.720 -51123.2 1788.80 541.768
105 Ft(pm) -31066.0 3846.77 17.5750 -38290.4 5268.05 180.869
106 Ft(pm) -19141.4 2864.68 -5.93640 -26900.8 5060.10 -18.9386
105^6(pm) -8851.13 1320.97 -2.73489 -16808.1 3471.97 -45.8812
106F,(p„) 0 0 0 -7800.69 1621.10 -21.4000
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1. We have not attempted to prove rigorously that exact solutions corresponding to
the approximate solutions exist; that such exact solutions do exist is known [5] for
n = 2, r > 0, and has been verified here for n < 8, r = 0.

Appendix

An alternative form of F^p), defined by (70), is

- (1 + ri(1+('PvP)' (i + ,-) A'W' (77)
where A;(p) is the reciprocal polynomial of \i(i — l)-th degree, defined by

1111 1
1! 2! 3! 4! i\

A,(p) =

i +

0 1 + p

111 1
1! 2! 3! (i - 1)!

1 1 1
1! 2! (t - 2)!

0 0 1 + p-3 1̂! (i - 3)!

0 0 0 0 1!

(78)

On expanding A,- in terms of the elements of its first row, we obtain a recurrence relation
from which A, , A2 , ■ ■ • can be successively calculated:

A. = ^ A„_, - (1 + p"_1)A„_2 + |j (1 + Pn_1)(l + pn"2)A„_3

+ (_)n" n\ (1 + p"_1)(1 + p""2) ''' (1 + P)" (79)

Identity (77) can be proved by induction, using (79). Also A,-(p) is clearly a poly-
nomial of — l)-th degree, by inspection of (78). It is reciprocal because F((p) =
— F<(l/p), from (69).

An alternative derivation of exact solutions of (1) when r = 0, in which the poly-
nomials A,- arise naturally, is given in [1] for the case n = 6.

References
1. P. E. W. Grensted and A. T. Fuller, Minimization of integral-square-error for non-linear control systems

of third and higher order, International J. Contr., II (1965) p. 33
2. W. J. Cunningham, Introduction to nonlinear analysis, McGraw-Hill, New York (1958)
3. H. D. Greif, Describing function method of servomechanism analysis applied to most commonly en-

countered nonlinearities, Trans. Amer. Instn. Elect. Engrs., 72, part II (Applications and Industry),
(1953) p. 243

4. H. Kauderer, Nichtlineare Mechanik, Springer-Verlag, Berlin, (1958) p. 209
5. R. M. Rosenberg, The Ateb{h)-functions and their properties, Q. Appl. Math., 21 (1963) p. 37
6. N. R. C. Dockeray, Elementary treatise on pure mathematics, Bell, London, (1934) chapter XV
7. B. O. Pierce and R. M. Foster, A short table of integrals, Fourth Ed., Ginn, Boston (1956)


