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1. Introduction. In continuum physics the word wave is used with several distinct
meanings. To some a wave is a sinusotdal disturbance, to some it is any member of a
certain class of solutions to a hyperbolic equation, and to others it is a propagating singular
surface. Here we follow Christoffel, Hugoniot, Hadamard, and Duhem and use the
word in the last sense; thus, we define a wave to be a surface, moving with respect to the
material, across which some kinematical variable, such as the acceleration or the velocity,
suffers a jump discontinuity. In the present age of sonic booms and nuclear explosions,
even the layman is familiar with ‘‘shock waves.” To find, however, applications for a
general theory of propagating singular surfaces, one does not have to turn to the latest
accomplishments of physies; it suffices to think carefully of the motion of an object
struck with a hammer.

Here we shall briefly review some aspects of the classical theory of wave propagation
in elastic materials and discuss recent extensions of the classical theory to materials with
memory.

2. Wave propagation in elastic materials. Let z,(X;, ) give the spatial position at
time ¢ of the material point which occupies the position X; in the reference configuration.**
According to the Duhem-Hadamard classification scheme, a surface £ = Z(f) is a
wave of order N if the N’th-order derivatives of z;(X;, t) exhibit jump discontinuities
at =, but all lower derivatives are continuous across Z. A shock is a wave of order 1;
that is, z;(X; , ¢) is continuous, but the velocity = = (9/8t)z;(X; , f) and the de-
formation gradient F,; = (8/0X;)z.(X,:, t) show jumps across Z. At an acceleration
wave, second derivatives, such as the acceleration z® = (8°/0t*)z.(X; , 1), are the first
to suffer jumps; hence, an acceleration wave is a singular surface of order two. Our
interest here is in waves with N > 2.

In the terminology of Truesdell and Toupin [8] and Truesdell [10], the speed of
propagation V of a wave Z is the rate of advance of = along its unit normal relative
to the particles instantaneously situated on =. A convenient measure of the amplitude
of a wave of order N is a vector s; defined by

(=V)"s; = [z™], ey,
where [z*] is the jump in ¥ = (3"/8t")z,(X, , t) across 2. For an acceleration wave,
Vs, = [z?].

Let the Piola—Kirchhoff stress tensor S;; be defined by the formulaf

pSuly =T, @

*Received November 30, 1965.
**We use Cartesian tensor notation.
fWhenever an index is repeated in a product of two terms, summation over that index is understood.
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where T;; is the familiar stress tensor of Cauchy and p is the present mass density.
For an elastic material, when thermodynamic influences are ignored, S;; is a function
of the deformation gradient:

S:’i = Su(Fu)- (3)

The classical Fresnel-Hadamard Theorem asserts that for any material obeying (2)
the amplitude s; and speed of propagation V of an acceleration wave traveling in the
direction n, must obey the propagation condition

Qi;(ny)s; = Vs, ’ @

where the tensor Q,;(n,), called the acoustic tensor, is given by*

<]
Qii(n) = FonFunam, :97-,1— Si(Fy)- (5)

Ericksen [3], working in the theory of isotropic incompressible hyperelastic materials,
and Truesdell [10], working in the theory of compressible elastic materials, have shown
that all elastic waves of order N > 2 must also obey the propagation condition (4)
with Q;;(n,) given by (5).

Even in elasticity theory one should include thermodynamic influences and allow
S;; to depend not only on Fy; but also on a thermodynamic variable such as the tem-
perature 6 or the specific entropy ». In the thermodynamic theory of acceleration waves,
zM, F.; , 6, and g are taken to be continuous across the wave:

(2] = [Fu] = [6] = [1] = 0. (6)
An acceleration wave is said to be homothermal if, in addition to (6), one has
wy _ |28 ] _
01 = 2] 0. ™
On the other hand, if, in place of (7),
wy _ [on ] _

then the wave is called homentropic. It is the content of the first theorem of Duhem, that
homothermal (homentropic) acceleration waves in elastic materials obey (4), provided
that the derivative 9/9F;, in (5) is taken at constant temperature (entropy). The
second theorem of Duhem gives the physical circumstances in which acceleration waves
are homothermal or homentropic: Every acceleration wave in an elastic material obeying
Fourier’s law of heat conduction with positive-definite thermal conductivity is homo-
thermal; every acceleration wave in an elastic material which does not conduct heat
is homentropic.**

An elastic material is said to be hyperelastic if the stress-strain function of (3) is
obtained by differentiating a stored energy function ¢; i.e., if

SulPu) = 35~ 8(Fu). ©)

*For the most general statement of the Fresnel-Hadamard Theorem and for a detailed discussion
of its consequences, see Truesdell [10].
**The two theorems of Duhem are explained and given modern proofs by Truesdell [10].
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It is a familiar assertion of classical thermodynamics that every elastic material is
hyperelastic in the sense that

SFur , 0) = a% WFur, 0), (10)

Sn(Fkl ’ 77) e(Fkl B (11)

where ¢ is the specific Helmholz free energy :// = ¢ — Oy, and e the specific internal
energy.

A theorem of Hadamard asserts that for a hyperelastic material the acoustic tensor
(5) must be symmetric:

Qi) = Q;:(ny). (12)

It follows from this result, the first theorem of Duhem, and the classical equations (10)
and (11), that the acoustic tensor of an elastic material must be symmetric in homo-
thermal and homentropic waves.

3. Materials with memory. The recent years have seen the development of general
theories of non-linear materials with memory.* In these studies it is assumed that the
present stress depends not only on the present value of the strain but also on the past
history of the strain, and one attempts to solve problems without specializing the func-
tional expressing this dependence. Let us define a function F{}’ over the half-closed
interval [0, «) as follows:

Fi'@® =Fut—9, 0<s<o. (13)

This function is called the history up to téme t of the deformation gradient. The past
history F{;},, of the deformation gradient is just the restriction of F{}’ to the open interval
0, =);ie., F{3,,(s) agrees with F{;(s) for all s > 0 but is left undeﬁned for s = 0.
Obviously, a knowledge of the history Fy} is equivalent to a knowledge of the present
value Fy, (1) = Ff}(0) and the past history F{),, . Following Noll [6], we define a simple
material to be a material for which the stress is determined when F(! is given. For
such a material we can write

Sn = SH(F(” (14)

Here S;; is a functional; i.e., a function whose argument is a function, F};’ , and whose
value is a tensor, S;; . When we wish to emphasize that for a general simple material
S;; depends on both the present value and the past history of the deformation gradient,
we write (14) in the form**

S Su(F(r)kl ’ Fkl) (15)

where, for short, we put F,; = F{(0). On comparing (3) and (15), we see that the
elastic materials considered in the previous section are those simple materials for which
the dependence of S,;(F{2),, ; Fi;) on the past history F{),; is negligible. Here we do
not assume that the influence of F{{},, on 8;; can be neglected; we assume merely that this

*See, for example, the works of Green and Rivlin [5], Noll [6], Coleman and Noll [7, 9], and Wang
[22], which are summarized and extended in the exposition of Truesdell and Noll [20].
**There is no summation over & or [ in equations (15) and (16).
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influence is compatible with the principle of fading memory; i.e., with a smoothness
postulate used by Coleman and Noll [7, 9] to render mathematical the intuitive idea
that strains which occurred in the very distant past should have a smaller influence
on the present stress than strains which occurred in the recent past.

Let us denote by Dp,.S;;(F5;’) the fourth-order tensor obtained by differentiating
the stress with respect to the present value of deformation gradient holding fixed the
past history:

d

Dqusii(FlE;)) = oF

Sii(FE:;kl 3 Fra). (16)

This tensor [12, 13] gives the moduli for instantaneous response to small strain impulses
superimposed on Fy;’ at time ¢.

Equation (16) defines a linear differential operator Dp,, mapping functionals into
functionals; this operator plays a central role in the theory of wave propagation [15-18]
and in the thermodynamics of materials with memory [12, 13].

The theory of singular surfaces propagating in materials with memory is not an
empty subject. Among the materials subsumed under the class of simple materials
with fading memory are the materials of the theory of linear viscoelasticity. In that
theory, Sips [2], Lee and Kanter [4], and Chu [11] have exhibited explicit solutions of
the dynamical equations showing shock waves. It is an elementary exercise to construct
from these solutions others showing acceleration waves. Further, Pipkin [23] has obtained
exact solutions showing shock and acceleration waves for a special simple fluid with
fading memory that gives rise to nonlinear field equations.

Recently [15-18], we have been able to extend to gencral non-linear materials with
memory the classical propagation thcorems given in the previous section. For example,
we have the following extension [18] of the Fresnell-Hadamard and Ericksen—Truesdell
theorems. Consider a wave of order 2 or greater traveling in the direction n, in a general
simple material with fading memory; such a wave still obeys the propagation condition
(4)*, and the tensor Q;;(n), now called the instantaneous acoustic tensor, is given by
the following remarkably simple generalization of (5):

Q.;(n) = FamF’blnaanijsil(F;;) . )

For the validity of this theorem the past history of the material just in front of the
wave may be arbitrary, subject only to certain natural tameness hypotheses.

Of course, we know that the stress in a general material with memory depends not
only on the history of the deformation gradient but also on the history of a thermody-
namic variable. Hence, (14) should be replaced by either

Sii = gii(Flii)» 9(“) (18)
or

Sii = Su(F, 1), (19)

*Propagation conditions of the type (4) are known for acceleration waves in several special materials;
for elastic materials (4) was derived by Hadamard [1] and for the theory of linear viscoelasticity by
Herrera and Gurtin [19]). We have recently seen a manuscript by Varley [21] in which he arrives at (4)
for acceleration waves in materials of integral type.
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where the function 6’ is the history of the temperature and the function ‘* the history
of the specific entropy:

0'(s) = 0(t — 9), 7906 =9(t—s), 0<s< . (20)

When (18) is assumed, it is also reasonable to assume that the specific Helmholz free
energy ¢ is given by a functional p of the histories F{? , and 6‘*,

¥ =p(Fi’, 6), (21)

and that the heat flux vector ¢; depends not only on the present temperature gradient
gm = (3/92,)6 but also on F{¥ and §‘*,

¢ = qu(Fi, 65 gn). (22)

When (19) is assumed, it is reasonable to postulate that the specific internal energy is
given by a functional of F{} and n‘*:

e = e(F), 7). (23)

Starting from assumptions somewhat more general than these, Coleman [12] has
shown that the functionals S;; and S;; are compatible with the principle of fading memory
and the second law of thermodynamics only if these functionals are determined by
p and e through the relations,

Sy(FSY, 6) = Dp, p(FiY, 6, (24a)
S4(FY, n) = Dpe(FY, 7, (24b)

where Dp,; is the operator defined in (16). These relations generalize to materials with
memory the classical relations (10) and (11) for elastic materials.

Even when the history of a thermodynamic variable is brought in, the propagation
condition (4) still holds for homothermal and homentropic acceleration waves [17, 18].
For homothermal waves the instantaneous acoustic tensor Q;; is given by (17) with
S:;(F$Y) replaced by S,;(FS?, ), and the function 6, the history of the temperature
up to the moment of arrival of the wave, is held fixed in the computation of the derivative
(16). Tor homentropic acceleration waves Dy, is applied to S,;(F’?, »'*), and the
function 7‘”’, the history of the entropy at the wave, is held fixed in (16) and (17).
These observations extend to materials with memory the first theorem of Duhem.
The second theorem of Duhem also has a direct generalization [17, 18]: In a definite
conductor of heat, every acceleration wave is homothermal; in a non-conductor, every
acceleration wave is homentropic. Here, by a definite conductor, we mean a material
for which —dq;/dg.. , computed using (22), is always a positive-definite tensor. The
proof of the theorem is straightforward for a definite conductor; the proof for a non-
conductor, i.e., a material with ¢; = 0, uses a generalization [12] of the relations (24).

Our main purpose in writing the present article is to bring to the attention of ex-
perimenters the following extension [18] of the classical symmetry condition (12):
The relations (24) imply that, even in a material with memory, the instantaneous acoustic
tensors for both homothermal and homentropic waves are always symmetric tensors in the
sense of equation (12). This theorem appears to supply a method of testing the physical
appropriateness of the relations (24). Fortunately, Truesdell [10, 14], working in the
theory of elastic materials, has found situations in which measurements of wave velocity
can test the symmetry of the acoustic tensor. His analyses can be applied with small
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modifications to the theory of acceleration waves entering a general material with
memory which previous to arrival of the wave had always been at rest in a fixed con-
figuration.
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