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SYSTEM IDENTIFICATION AND PREDICTION—AN ALGORITHM
USING A NEWTONIAN ITERATION PROCEDURE*

BY
THEODORE R. GOODMAN

Oceanics, Inc.

Abstract. A mathematical technique, especially suitable for programming on a
high speed digital computer, is presented for identifying a complete dynamic system
having unknown parameters when data concerning one variable of the system is
available.

I. Introduction It often occurs that certain state variables of a dynamic system
are unmeasurable, while one particular state variable can be measured either con-
tinuously or discretely as frequently as desired. These measurements, together with an
assumed form for the dynamic equations, should be sufficient to determine the system
for all time. The significance of the problem lies in the fact that identifying a system
is a necessary prerequisite to controlling it, and so, by solving the posed problem, there
is given an effective procedure for the design of a class of adaptive controls. A typical
application is in the determination of aerodynamic stability derivatives from flight
test measurements. A complete literature on this application exists [1]-[8], but generally
the analyses presented in these references depend on the system being linear. The
analog matching method [6], [7] and the equations of motion method [8] do not require
linear equations; but, in the case of [6], [7], a trial and error matching of function is used,
and consequently the method is somewhat subjective depending on the skill of the
operator; in the case of [8], the equations of motion are treated as algebraic equations
and, as a consequence, data concerning every state variable and its time derivative
is required regardless of the convenience or accuracy of such data. Another application
is in the determination of satellite orbits where data is obtained from a network of radar
tracking stations. With this as motivation Kahne [9] has developed a method for identi-
fication whereby the solution curve is made to pass through the given data points.
In this method the number of data points and the number of unknowns must be equal.
Convergence to the solution is achieved by a method especially devised for solving
two point boundary value problems [10]. Kumar and Sridhar [11] essentially solve
the same problem using the method of quasi-linearization. These problems have been
generalized by Bellman, Kagiwada, and Kalaba [12] in that the number of data points
can be unlimited and the curve fit is accomplished in the least square sense. Convergence
to the solution is achieved by the method of quasi-linearization.

An iterative method will here be developed which does not suffer from subjectivity
and which achieves the curves fit in the least square sense. Convergence to the solution
is achieved (though not proved) by a method which arises naturally out of the method
of least squares. Two cases will be considered: in the first case the measured data will
be assumed to be specified at discrete time intervals; in the second case the measured
data will be assumed to be specified continuously as a function of time. In both cases
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the dynamical equations are assumed to be nonlinear and are given as:

?].- = gi(yl y *t Yn @ t)r y.(O) = C; (1)

where the parameter vector « and the initial vector ¢ are both unknown.
II. The discrete case. Suppose measurements to have been made on, say, the first
state variable y,(¢) at times ¢, ,

Yi(lm) = b, m=12,.--M ()

where b,, is the measurement at time ¢, . It is required to find an initial vector ¢ and
a parameter vector a which, together, minimize the sum of the squares of the deviations:

M

e = 2 {yita) — b}’ ®3)

m=1

Thus, the solution of (1) is sought which is in best agreement with the measurements
in a least square sense.

It has been pointed out by Bellman, Kagiwada, and Kalaba [12] that this problem
can be reduced to a nonlinear multi-point boundary value problem. These authors
present a method of solution based on the technique of quasi-linearization. Their method
is iterative and consists essentially in finding neighboring solutions to the quasilinearized
equations while holding the boundary conditions fixed. In this paper, the alternative
approach of holding the differential equations fixed and finding solutions which satisfy
neighboring boundary conditions will be developed.

As pointed out in [9], [11], [12] the components of the parameter vector « can be
considered to be additional state components subject to the equation

a=0. 4

In this case, the parameter vector can be suppressed in (1) and the number n increased
to include the additional state components. The analysis will proceed on this basis.

It will be supposed that the initial point, ¢ = 0, is not necessarily one at which a
measurement has been made, which is the most general case. The system will be de-
termined by iteration as follows: Values of the components of the initial vector ¢ are
estimated, in which case (1) can be integrated. The estimated initial vector will be
denoted by c* and the resulting solution vector by y*; furthermore, the deviation can
then be calculated and its value denoted by €*. Suppose the initial vector to be changed
by an increment dc; this would cause the solution vector to be changed by an increment
oy and the deviation by an increment de. From (3) it is seen that

de = 2 mZ {(1:(n) — b} S9(tm)- (5)

The equation which the incremental solution vector satisfies is obtained by expanding
(1) in a Taylor series and retaining only linear terms:

53.(8) = (%)* o ®)

where the repeated suffix implies summation from 1 to » and the asterisk implies that
the coefficients are calculated using the estimated solution y*. Equation (6) must now
be integrated n times; the jth time the integration is performed the initial conditions
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are that dy;(0) = 1 and all the other 8y,;(0)’s vanish. This special solution is denoted
by 8y;; , and the general solution can then be written, by superposition:

oy = 2 de; oyui(l)- @)
In particular, only 8y, is required.

&y, = dc; 8yy;(8), )

where, again, the repeated index implies summation from 1 to n. Upon substituting
into (5) and interchanging the order of the summations, the variation of the deviation

becomes
M

e = 20¢; 2 {41(tm) — bm} 8y1i(t). )

m=1

The variation of the deviation has thus been expressed directly in terms of the variation
in each of the initial conditions. In order for e to be minimum 8¢ must vanish, which
means that if U, is defined to be

M

U, = Z {yl(tm) - bn} 0Y1:(tm) (10)

m=1
the boundary conditions which (1) must satisfy are
U, =0, i=1,---,n. (11)

In general, using the estimated vector ¢* and the resulting solution y* the values
of U; will not vanish. If the value of U; as calculated by this procedure is denoted
by U% , then it is seen that

M

U = 2 {y%(tw) — bn} 8y1i(ta)- (12)

m=1

The objective is to make the U; vanish by an iteration procedure. In the special case
where M = n, (10) and (11) constitute n simultaneous homogeneous linear equation
for the » unknowns y,(¢,) — b, , whose solution is y,(t,) — b, = 0, i.e., the solution
must pass directly through the measured points, in which case e = 0. Whenever M > n,
which is generally the case, the procedure is more complex and e can only be minimized.
Consider the increment in U; caused by the increment in y; . From (10) there is obtained

M
U, = El 5y1(tm) 6yli(tm)° (13)
In order that U, vanish the condition
U, = =U* (14)

must be imposed. Substituting (8) into (13) and interchanging the order of summation
there is finally obtained

M
8U; = & 2 Y1i(tm) 8Y1i(Em). (15)

Equations (12), (14), (15) constitute » simultaneous linear algebraic equations for the
n unknowns dc; . Upon adding the incremental values to the estimated values c*% ,
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improved estimates of the ¢; are obtained. It should be noted that the matrix of coeffi-
cients in (15) is symmetrical.

III. The continuous case. In the continuous case a continuous record of y,(f) is
assumed to exist. If the measured value of y,(¢) be denoted by b(¢), this can be ex-
pressed as

vi(®) = b(®). (16)
In this case it is required to minimize the deviation defined as
T
= [ wo-vora, a7

where T is the length of the record and is assumed to be given.

Once again the parameter vector a can be suppressed and the components of the
parameter vector taken to be additional state components subject to (4). The asterisk
will once again be used to denote results obtained using an estimated initial vector c*.
The increment in the deviation in this case becomes

se=2 [ () = b1 a0) (8)

where (6), (7) are again the incremental equations and their solution respectively.
Upon substituting (8) and interchanging the summation and integration there results

T
de =2 [ T — b0y dt 19)
0
Once again e must vanish, which means that if U, is defined to be
T
U= [ @ = b0 and (20)
0
the boundary conditions which (1) must satisfy are
U, =0, 1=1,---n. 21)
Denoting the value of U, as obtained using ¢* by U* , then

vt = [ i) - b0 at) at. 22)

Once again it is required to make the U; vanish by an iteration procedure. I'rom (20)
there is obtained

oU; = fT oy (8) dy.i(t) dt, (23)

which becomes, upon substituting (8) and interchanging the order of summation and
integration

T
U, = 5Cif 8y1:(2) 8y.;(8) db. (29
0

Equations (22), (14), (24) constitute n simultaneous linear algebraic equations for the
n unknowns dc; .
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IV. An example. Suppose a freely falling body to be observed in vacuo near an
earthlike planet. The position is observed at four equal increments in time according
to the following table:

TABLE I
tn bm
0 0
1 15
2 65
3 145

The question is: what is the best estimate of the acceleration due to gravity, «, based
on this data. This problem was selected to illustrate the method because the exact
solution can be obtained by more conventional means as a check, and because the
arithmetical steps can readily be performed by hand. Furthermore, the problem serves
to demonstrate, in a simpleminded way, that the method can be used to analyze data
obtained from an aerospace probe in order to deduce geophysical or meteorological
parameters.
The dynamical equations are

a1 ays dvs _ g @5)

doA N =22 = . £

dt ~ ¥ g t

where y, is the displacement, y, the velocity, and y; (=) the acceleration due to gravity.
The general solution to this system of equations is

2
w="+A4t+B, (26)

where A and B are constants of integration. Upon substituting into Eq. (3) the following
expression for e is obtained

2 2
e=B2+[g+A+B—15] +[2a+2A+B—65]

+[ga+3A +B—145:|. @7

In order to minimize ¢, it is necessary to set the three partial derivatives de/de, de/d4,
d¢/9B equal to zero. This provides three simultaneous equations for «, 4, and B whose
solution is

A = —.25, B = —.25, a = 32.5. (28)
This constitutes the conventional solution which is exact. Now consider the same

problem from the point of view of the Newtonian iteration procedure. The estimate
of the initial vector will be taken to be

¢* = {0,0, 32}. (29)
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In this case y* is
y* = {16£, 32¢, 32}. (30)
The perturbation equations are
8 = 0Ys , 0Y: = 0y , 8y, = 0, 31)

which are exact because the original equations are linear. Because these equations are
exact it can be anticipated that the corrections as calculated by the Newtonian method
will be exact in one iteration. The solution matrix is

TABLE II

j=1 1 0 0
i=2 ¢ 1 0
i=3 /2 ¢ 1

Only ¢ = 1 is of interest. From Table II and the estimated solution (30), the following
table of calculated data can be constructed

TABLE III

tm Syn Y1z 813 Y1 — bm

0 1 0 0 0
1 1 1 1/2 1
2 1 2 2 -1
3 1 3 9/2 -1

With the aid of Table III, the quantities U*% can be calculated according to (12):
Uy = —1, Uy = —4, Uy = —6.

Furthermore, the matrix of coefficients can be calculated according to (15):

4 6 7
6 14 18
7 18 49/2

The solution concurs precisely with the results previously obtained.

V. Final remarks. The iteration technique presented herein can be generalized
to cases where more than one variable is measured. The deviation can then be generalized
(in the discrete case) to

M

€ = W "; {yl(tm) - blm}2 + w, E {y2(tﬂl) - b2m}2’ (32)

m=1
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where the weighting constants w are a measure of the relative confidence one has in
the measurement of each variable, and reflects this confidence directly by being the
reciprocal of the mean square deviation of the measurement with respect to random
errors (see [4] for further discussion of this point).

The author would like to thank Mr. Theodore P. Sargent for critical discussions

held during the development of this technique.
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