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PHENOMENOLOGICAL THEORY OF MULTIMODE SURFACE WAVES
FOR PLANE STRUCTURES* f
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Courant Institute of Mathematical Sciences, New York University

Abstract. The notion of impedance boundary condition is generalized and illus-
trated by the discussion of the electromagnetic field arising from a magnetic line dipole
source located above a plane structure. The generalized impedance boundary condi-
tion contains a set of parameters whose totality offers a physical description of the
configuration. By suitably selecting these parameters, the configuration may be made to
correspond to a structure that supports surface waves. We give an exact solution for
a plane structure that supports one, two and three surface waves. The magnitudes of
the surface waves are obtained and simple formulas for the radiated far field patterns
are given. We also show how the methods employed can be extended to the case of any
number of surface waves. This involves an nth order mixed boundary condition for a
second order partial differential equation.

1. Introduction. It is well known that surface waves can be excited and propagated
along particular idealized electromagnetic structures. Examples are dielectric coated
surfaces, dielectric slabs and corrugated or laminated structures.** In so far as the sur-
face wave feature is concerned, it is known that the details of the structure may be
suppressed and replaced by an impedance boundary condition [9]. Subsequent develop-
ments showed that the use of impedance boundary conditions facilitated the solution
of more complex problems such as the excitation, propagation and diffraction of sur-
face waves on structures with discontinuities in impedance and geometry [5, 6, 15-24],
The phenomenological representation by an impedance boundary condition is also
useful in analyzing the effect of other structures such as absorbers and surfaces with
anisotropic conductivity [6, 16],

Since an open structure acts to some extent like a wave guide, and since its theory
is of use in surface wave antennas, it would seem, to be of interest to generalize the
existing theory to multi-mode surface wave guides. This means to generalize the body
of theory mentioned above to the case of surfaces that support more than one surface
wave. Thus one should ultimately possess a body of theory for surface wave guides
analogous to that already available for conventional wave guides. Typical problems
of interest are the analysis of the effects of radiation from junctions, changes in cross
section, effects of terminations, etc. The present paper is the first part of a series devoted
to these topics.
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The phenomenological theory on which the generalization is based has not been
verified experimentally. However, it is elear that such surfaces can be realized, at least
by sufficiently thick dielectric slabs or coatings. There are also certain qualitative
features of the results for the phenomenological theory of one mode in the case of the
excitation problem which are in agreement with the exact theoretical results for a slab
or thin coating. It would certainly be worthwhile to compare the exact theory with the
phenomenological theory presented here with more than one mode and in detail. Also,
experimental results for one or more modes would also be desirable. The phenomenological
theory offers the possibility of analytical solutions of complex problems whose analysis
from the standpoint of a given detailed structure is difficult or impossible by present
analytical methods. Another problem is the correspondence between detailed properties
of the structure and the choice of a generalized boundary condition. The problem has
been treated for corrugated structures which support one surface wave. [7]. It is also
well understood in the case of a dielectric structure for one mode and has been partially
analyzed by the authors (in a paper to appear shortly [26]) for a multi-mode dielectric
structure. In brief, it would seem desirable to compare the phenomenological theory
(i.e., exact solutions using generalized boundary conditions) with exact solutions in
which the detailed structure is taken into account more explicitly.

The purpose of the present paper is to study the electromagnetic field that arises
when a magnetic line dipole source is located above a plane structure that supports
several surface waves if the surface of the structure is characterized by a generalized
impedance boundary condition. This condition is introduced here for the first time.
We describe a procedure for finding the exact solution for plane structures that support
any number of surface waves. We then give the exact solutions for the cases of one,
two and three surface waves. A different procedure, which is elementary in character,
is next described to find the radiated far field and radiation pattern for any number of
surface waves. Results are then given for the cases of one, two and three surface waves.
It should be emphasized that the effects of terminations, finiteness, etc., which constitute
the main applications of the present formulation, are excluded from consideration
in this introductory paper. The treatment of these basic diffraction effects, along the
lines of [5, 6, 15-24], are the subject of subsequent papers.

The boundary condition we employ to describe the propagation of several surface
waves along a plane surface wave structure is given by

ft(s+x-)u(x, y) = 0, y = 0 (1.1)

where u(x, y) is the z-component of the magnetic vector H(x, y), x and y are the usual
Cartesian rectangular coordinates, and X,- are constants characteristic of the surface.
The value of X( is given by

X,- = iweZi = iictiRi — iX,), (1-2)

where e is the permittivity of free space, « is the angular frequency, and Z, , 72, and
Xt are the impedances, resistances and reactances of the surface, respectively. For
surface wave propagation it is necessary to require that*

Re X, > 0. (1.3)
*This assumption is employed in the illustrative examples that follow, but is not an essential re-

striction.
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It is worth noting that if there is to be negligible attenuation of the surface waves
along the surface, it is necessary to require that Ri « X,- . This boundary condition
is a natural generalization of the usual impedance boundary condition employed on
surfaces supporting one surface wave. For example, when n = 1 in (1.1) we obtain
the boundary condition

(dy+ Xi)u(x' y) = °> y= °- (L4)

This boundary condition is well known and is a good approximation to several im-
portant physical configurations. Perhaps the simplest example is a thin dielectric layer
lying on a perfectly conducting ground plane. This and other possible physical con-
figurations are discussed in [7], where additional references are given. It is clear that a
surface wave solution of the form

u.(x,y) = Ale-x>y+iVk°^'"" (1.5)

satisfies the wave equation, is outgoing at infinity, and satisfies (1.4). Hence a surface
characterized by (1.4) can indeed support surface waves. Similarly, the generalized
boundary condition (1.1) can also support surface waves of the form

u.{x,y) = Y, Axe-*iy+iVk'+Xi* M. (1.6)
i = l

Therefore (1.1) is the natural extension to structures supporting several surface waves.
We shall call these multi-mode surface wave structures and use the generalized boundary
condition (1.1) as their defining property. We will not discuss the physical realizability
of the surface wave structures here. We point out, however, that a perfectly conducting
ground plane with a sufficiently thick dielectric coating, or several different thin dielectric
coatings, will support more than one surface wave.

2. Multi-mode surface wave structures. We examine the electromagnetic field
that arises when a magnetic line dipole source is located above a plane structure that
supports n surface waves. Consider the plane surface y = 0 and suppose a magnetic
line dipole is located at the point x = 0, y = y0. See Figure 1. Assume the region y > 0
is free space. The boundary condition on the surface is given by the impedance condition

n(^ + A,)w(z, y) = 0, y = 0 (2.1)

where u(x, y) is the magnetic field component H, and the X,- are constants characteristic
of the surface material. We wish to solve the time-reduced Maxwell's equations, subject
to the prescribed condition, and obtain the amplitude of the surface waves propagated
along the surface.

The time dependent form of Maxwell's equations is

V X H = —t'coeEj

V X E = icc/iH. j
(2.2)

where E and H are the electric and magnetic field intensities, and e and n are the per-
mittivity and magnetic permeability of free space. We assume the time dependence to be
of the form e~'wt. Because of the geometry, the field produced is independent of z and
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Fig. 1. Magnetic line dipole source and image in the presence of a surface characterized by a generalized
impedance boundary condition.

hence is completely determined by the value of H, = u{x, y). We have

Hx = Hy = Ez = 0 (2.3)

and

1 du
E* = atcot ay

E" = + ~ ^
looe ox.

(2.4)

The function u = u(x, y) satisfies the wave equation

(V2 + h2)u = —4:-jt8(x — 0)5(2/ ~ 2/o) (2.5)

where V2 is the rectangular Laplacian, k is the propagation constant of free space
and 5 is the Dirac delta function. Therefore, the mathematical problem reduces to that
of solving the inhomogeneous wave equation (2.5) subject to the mixed boundary condi-
tion given by (2.1). In addition to the prescribed boundary condition, we require the
far field to be outgoing, and the value of the total magnetic field (excluding the source)
to be finite everywhere.

We now employ a technique developed by the authors [5, 6, 16-22] for use in solving
mixed boundary value problems arising in electromagnetic diffraction theory. Introduce
an auxiliary function v defined by

• - 6 (i+*')"• <2-6)
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Then v satisfies the equation

(V2 + k2)v = -47r n (-^ + X,.)s(x - 0)5(2/ - Vo) (2.7)

where we use the result

I s<« ~ «"> - l(""
Also, v is now subject to the simpler conditions

(1) v = 0, y = 0

(2) Outgoing traveling waves at oo
(2-8)

The solution of the auxiliary problem is easily constructed by introducing the image
located at the point x = 0, y = y0 . The desired solution is

v(x, y) = vk fl (—£- + X,)[H^ikr.) - Il'0l\kr+)}. (2.9)
j=i \ oyo /2=1

where

r± = Vx2 + (y ± y0f. (2.10)

Here r_ and r+ are the distances from the source and image to the observation point,
respectively. Clearly the solution vanishes on the boundary, is outgoing at infinity,
and possesses the correct singular behavior at the source x = 0, y = y0 ■ A particular
solution of the original field u can be found by solving (2.6). It is

uv(x, y) = Z fl 7T \ s e~Uy [ eu\(x, ri) dr,. (2.11)
t = 1 2 = 1 vA j A i) J-co

(»Vj)

This solution is not a wave function since the ^-derivative in regions including the
positive j/-axis is discontinuous. We can remedy this defect, however, by adding to
(2.11) complementary solutions of the form

«.(*, y) = E A,.e-Xi»+,Vi'+Xi'ul. (2.12)
i = 1

Then the combined solution given by

u(x, y) = uv(x, y) + uc(x, y) (2.13)

can be made to satisfy the continuity condition on du/dx. This is equivalent to imposing
the jump condition

du
dx. = Lim {to (x y °'y) ~^.(x <0'V)\ =" °- (2-14)

The requirement (2.14) is sufficient to determine the constants , which are the am-
plitudes of the surface waves. The exact solution for u(x, y) will contain the sum or
difference of the source and image (depending on whether or not there are an odd or
even number of surface wave modes, respectively), a linear combination of integrals,
all of the same type but with different X/s, and a sum of surface waves as given by (2.12).
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3. Summary of Results for n = 1, 2, 3. Using the procedure indicated in the
preceding Section, we list the results for 1, 2 and 3 surface wave modes. In obtaining
the final expressions for u(x, y), we employ integration by parts and use the following
results:

^ H^\kr) = — kll[l\kr) cos 6 (3.1)

Lim f e'-H^ikVx2 + („ + y0f) =^= , = ^ (3.2)
x-o J-» Vx + (y + y0)

Also, we find it convenient to introduce the integral

/(A,- ; y) = X,e~x'" f ex"Hl0"(kVxa + (v + y0)2) dn. (3.3)
J-co

The results for u(x, y) are summarized below:

One Mode (n = 1)

u(x, y) = iAH{o\kr-) + H?\kr.)} - 2«7(X1 ; x, y)

I 47TflAi -Xi (y + y0?+i +Xi 3 1*1 /q ,f\

+ vr+x? ( }
Two Modes (n = 2)

«(:r, y) = iw{H«Xkr-) - H?\kr+)} - 2« & + ^ /(X, ; s, y)
vA2 Aiy

r, • (Xl + X2) jy. . \ . 47TtXi(X, + X2) + III
- 2" (X, - X.) 7(x-' *•9> + Vf + x: (X, - X.)e

4TrtX2(Xi ~t~ X2) — Xa(y + Vo)+*"V/A:a+Xa2|i| /q tr\

+ Vt' + xHx,-x,)e (3"5)
Three Modes (n = 3)

u(x, y) = ^{^"(Jr.) + HZ\kr+)} - 2*i ^ ^ /(X, ; s, y)

- o--,' (Xi + X2)(X2 + X3) ,, , _ . (Xi + X3)(X2 + X3) _ .(Xl - X2)(X3 - X2) /(X2 ' *•v) 27rl (Xx - X3)(X2 - X3) /(Xa'*• y)

47ri'X1(X1 -f- X2)(Xt -f- X3) _ -Xi(*+»o)+«Vt«+x,* ui

\/fc2 + Xi (X2 — Xt)(X3 — Xi)

. 47rt'X2(X1 -)- X2)(X2 ~f~ X3) ^.-x,(v+ii.) + iVit't>i' 1 x 1

"\/k2 + X2 (Xi — X2)(X3 — X2)

1 47rt'X3(X1 + X3)(X2 + X3) x,(m-y,) + .Vf+x,' ui /q 0\
y/k2 + X3 (Xi — X3)(X2 — X3)

4. Determination of the radiated far field. We now determine the radiated far
field arising from a magnetic line dipole source located above a plane surface that sup-
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ports n surface waves. The radiated far field can be found in the usual way by expanding
the exact solution asymptotically for large distances. We shall not proceed in this
manner, however, but will use a more direct and elementary procedure [5, 6, 16-22]
that does not require the exact results obtained in the earlier Sections.

Consider a plane structure that supports n surface waves. The same physical con-
figuration and notation employed earlier applies here also. See Figure 1. Rewriting
(2.6) and (2.9) we have

* - ft +4* C4.D
and

» = ** ft + X,){^n(fe-_) - H?\kr+)} (4.2)

Let r = Vx2 + y2 be the distance measured from the origin. Then the far field ex-
pressions for r± become

r± m r ± y0 sin d (4.3)

provided y0 <<C r. When kr± is large, (4.2) becomes

v(r' 6) ~ -^e'<ir_,r/4> fl + X>) sin (hjo sin 6) ^4-4)

where we use the asymptotic expansion of the Hankel function for large argument.
We expect the radiated far field of u(r, 6) to have a similar form, except that it will
contain surface wave terms that are appreciable at large x near the surface y = 0.
Hence, for fixed 6 and large r, we assume

u(r, 9) e'kr, MO, d ^ ir (4.5)
V r

where f(0) is unknown. Substituting (4.4) and (4.5) into (4.1), and using the result

3 .3.1 3 .3 , ,— = sin e — + - cos e — pa sin — , (4.6)dy dr r dd dr

we obtain /(0) correct to terms of order r~x/2. The expression for the radiated far field
then becomes

fa~ n ( + xi) sir
I8tT i(kr-ir/4) j -1 \ 3?/0 /

W® TT/., • I

sin (ky0 sin 6)
«(r, e) « eia"T/i) '-1 x 7° '  (4.7)

JJ (ik sin 6 + A,)

The radiation pattern of the far field is easily determined from (4.7). We define
the pattern function to be

 '*■'> (4.8)
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Then

T{9' k ' k ' " " ' k ' ky°)
(hjosin6)

n I + sin2 9
(4.9)

The expressions for the radiated far fields and the pattern functions for the cases
n — 1, 2 and 3 are summarized below:

One Mode (n = 1)
, ^ . IStt utr-x/4) [Xi sin (ky„ sin 6) — k sin 9 cos (ky0 sin 9]

U(r, U) \h~ e  tt.—:———r—: \ kr [ik sm 9 + Xx]

F[e, | , ky0) =
y sin (ky0 sin 9) — sin 8 cos (lcy0 sin 6)

j) +sin2
(4.11)

Two Modes (n — 2)

u(r, 6) e'(ir~r/4)

[(XiX2 — /c2sin2 9) sin (kyB sin 9) — (X! + X2)fc sin 0 cos (ky0 sin 9)]
[ik sin 6 + XJft'/c sin 9 + X2] (4.12)

F[d,^,^,ky0

7x>xI2 — sin2 dj sin (kyQ sin 6) — (~ + sin 9 cos (ky0 sin 9)

sin2 9 2 , • 2' + sm
(4.13)

Three Modes (n = 3)

u(r, 6) e,Ucr~"M)[ik sin 9 + Xi]_1[Yfcsin 9 + X2]_1[t7csin 9 + X3]~l

•[{XiXjXa — (Xj + X2 + \3)k2 sin2 9J sin (ky0 sin d)

— A; sin 0{(XiX2 + XA3 + X2X3) — A;2 sin2 9} cos (ky0 sin 0)] (4.14)

T'j'T' **) = [(r)3 +sin2 W + sin2 9VWf +sin2

jXjXfXs _ + |i + X3j gino e| sin ^ gin ^

_ S^H2 S^n " C0S S^n ^ (4.15)
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