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SERIES-PARALLEL GROUNDED TWO-PORTS*

BY

AARON FIALKOW

Polytechnic Institute of Brooklyn

1. Introduction. The synthesis of grounded two-ports without mutual inductance
has been an outstanding unsolved problem of electric network theory for many years.
The principal structure that has been utilized in the study of this problem has been
the series-parallel structure. The present paper derives a number of properties of series-
parallel two-ports. In particular a new realizability condition, independent of the residue
and coefficient conditions, is obtained for RC series-parallel grounded two-ports. These
results are described below.

As is well known, common factors play a decisive role in the synthesis of RC transfer
functions when the reduced numerators of the transfer functions have some negative
coefficients. Similarly, in two-port theory, a special position is occupied by those two-
ports—called factorable networks—for which the unsimplified numerators and de-
nominators of all the admittance functions and impedance functions have a common
factor. These networks are discussed in §4. The main purpose of the paper is to study
the effect on a given RC factorable network of two basic operations: (i) removal of an
impedance which is series connected to the rest of the network at one of its external
nodes (ii) decomposition of the network into two parallel networks. This is accomplished
in §5 and §6.

Now every series-parallel network may be simplified at each stage of its decomposi-
tion by at least one of the above methods. Hence the results of §5 and §6 may be applied
to these networks. This is done in §7. By this means the following theorem is proved
(Theorem 7.1): For an RC series-parallel factorable, grounded two-port, with common
factor f(s), the ratios A12//, (An — A12)//, (A22 — A12)// are polynomials with non-negative
coefficients. Here Au , Ai2, A22 are the cofactors of the network admittance determinant.
Some of the consequences of this new realizability criterion are explored. Thus, for
example, we prove the result (Theorem 7.2): Let the admittance functions 7„ = B*/G*,
Y2* = C*/G*, — Yt% = D*/G* of an RC series-parallel, grounded two-port be written so
that B*, C*, D*, G* have no common factor and let G2 be the factor of G which contains all
non-compact poles of the network. Then D*G2 is a polynomial with non-negative coefficients.

These results are independent of the residue and coefficient conditions and constitute
further necessary properties of RC series-parallel networks. However, as indicated in
§8, even all of these conditions do not constitute a set which is sufficient for series-
parallel realizability. However if D*, in Theorem 7.2 above, has non-negative coefficients,
a method of series-parallel synthesis of Yn , F22 , KY12 is given for sufficiently small K.
As is well known, the results for RC networks may be modified so as to apply to net-
works containing any two kinds of elements only.

2. Preliminaries. Let r be a general RLC transformerless network. The nodes of r
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are identified so that each branch consists of an R, L, and C in parallel. Consequently
the admittance y{j (i 5^ j) of the branch between nodes i and j is of the form a + bs +
c/s where s is the complex frequency variable, a, b and c are all non-negative and yti =
Uu . If T contains t + 1 nodes, also write

y« = Y, y<i. (2-1)
j =0

and introduce the notation

(it) = yu , (if) = -yu . (i ^ j) i, j = 0, 1, 2, • • • , t
Let /, be the current impressed by the driving sources upon node t and let E{ be

the voltage from any fixed node (for example, node 0) taken as reference node to node i.
The equations of the nodal system may be written as

/.• = Z (ij)E, , i = 0, 1,2, . t
J = 0

where, of course, E0 = 0. The network determinant 5) is

£ = I0'i)|> i, j = 0, 1, 2, • • • , t
and equals zero, since (2.1) is equivalent to (v) = 0. Let 'JJ;,- be the cofactor of
(ij) in ©, be the cofactor of (kl) in 3D,,- , etc. Then, as shown in* [3, p. 58], all the
D,, are equal. Also,

* + »//«• j, k = 0, 1, 2, • • • t (2.2)
Throughout the remainder of the paper, we suppose that the network T has only

three external nodes which we take to be nodes 0, 1 and 2. To promote economy of
language, we shall continue to refer to this three terminal network or grounded two-
port simply as a network. In this case, we introduce the following additional notation:

A. — 5)ll22 > ^ = 3I>0022 = ^22 t C ~ 3^0011 An ,

D — 3)0012 = ^12 j E = 3)ho2 1 F — 3)22oi = 5)001122 — A1122 • (2-3)

It follows from (2.2) that

A = E + F, B = D + F, C = D +E (2.4)
From (2.4) it is immediate that the three functions remaining from among A, B, C, D,
E, F may be determined by any triplet of independent functions such as A, B, C or
D, E, F or B, C, D or D, E, A. Furthermore, Jacobi's theorem applied to the cofactors
of A yields BC — D2 = GA. After use of (2.4), this last equation may be written in
the equivalent forms

BC — D2 = CA - E2 = AB - F2 = GA = DE + EF + FD
= |{[A2 + B2 + C2] - [(A - B)2 + (B - C)2 + (C - A)']} (2.5)

The external behavior of T is usually characterized by the triplet of impedance
functions

*The brackets refer to the references at the end of the paper.
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Zix = | , Z22 = | , = £ (2.6)

or, equivalently, by the triplet of admittance functions

Yii = | , F22 = | , 712 = (2.7)

In both of these characterizations, node 0 occupies a special position. (The two-port
T has node 0 as common to both the input and output terminals). However, the theory
of the network with three external nodes may also be given a symmetric formulation
by basing it on the quotients of A, B, C or alternatively, of D, E, F with either A or G.

3. Series-parallel networks. Every series-parallel network (and only these) is
capable of further simplification at each stage either by parallel decomposition into two
simpler networks of the same kind or by the series removal of an impedance at an
external node leaving a simpler network of the same kind. We now consider the effect
of these two operations upon the network determinant and its (repeated) cofactors.

First suppose that F (with external nodes 0, 1, 2) consists of the series connection
of the admittance y joining node 0 to node 3 and the network I1', whose external nodes
are 1, 2, 3. Here node 3 in F' will also be written as node 0', since its role is analogous
to that of node 0 in T. The network determinants of F and T' are

y 0 0 — y ■ ■ ■ 0 • • • 0
0 (11) (12) (13) (14) ••• (10

0 (21) (22) (23) (24) ■ • • (2t)

2D = -y (31) (32) (33) + y (34) ••• (31)

0 (41) (42) (43) (44) • • • (4/)

0 (/l) (t2) (13) (14) ■ ■ ■ (tt)

(33) (31) (32) (34) ••• (3t)

(13) (11) (12) (14) (10
£>' = (23) (21) (22) (24) • • ■ (2t)

(43) (41) (42) (44) ••• (4/)

(«) (/l) (12) (t4) ■ ■ ■ (tt)

It follows from (3.1) and (3.2) that

(11) (12) (13) (14) (10
(21) (22) (23) (24) ••• (2t)

A = (31) (32) (33) + y (34) • • ■ (3t) = 3D' + y£>'33

(41) (42) (43) (44) ••• (40

(3.1)

and

(3.2)

(*1) (t2) (13) (M) (tt)
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or, since 2D' = 0, SD£3 = D'00 = A', that

A = yA'. (3.3)
Similarly,

3^00 afl = <&a/3 "I" y<&aP 33 } a I fi ~ 1 t 2, 4, 5, * * * , t

or, since A, 5)a£33 — 3-^ooa^

®00a|3 = A' -)- y£)ooa0 i a, /3 = 1,2,4,5, • •' , t (3.4)
Also,

D00II22 = 35'l22 ~f~ 2/33u 2233 I

"D00U22 = 3D'l22 "I- U 3^001122 • (3-5)

From (2.2) and (3.4), we find that

2^ a a 0/J Z/£>aaO0 (3 6)

SiaaftS = y&'aaW > «, @ = 1 , 2, 4, 5, • • • , t

In the notation of (2.3), equations (3.3), (3.4), (3.5), (3.6) become

A = yA', A = yA', E = yE', F = yF', B = A' + yB',

C = A' + yC', D = A' + yD', G = A' + yG'. (3.7)
If the admittance y is removed at nodes 1 or 2, the corresponding results are obtained
by interchanging subscripts in equations (3.3) to (3.6).

Now assume that V consists of the parallel connection of two networks r' and r".
If the network determinants of r" and r" are written as

£)' = \(jpq)'\, p, q = 0, 1, 2, 3, • ■ • , a
£>" = \fyiv)"\, u, v = 0, 1, 2, a + 1, a + 2, • • • , t

then the corresponding determinant of T is

© = I($1, *\ j = 0, 1, 2, 3, ••• , t
where the (ij) are given by

(«/3) = (aP)' + (a/3)", (hi) = 0,

(a*;) = («*;)', (hk) = (hk)', (3.8)

(a/) = («0", (Zrw) =

Here a, (3; h, k; I, m have the restricted ranges 0, 1, 2; 3, 4, ■ • • , a; a + 1, a + 2, • • • , t
respectively, while i, j have the total range 0, 1, 2, • • • , t and (ij) = (ji). A Laplace
expansion of the determinants defining B, C, D and G, after using (3.8), yields the
results

B = B'G" + B"G', C = C'G" + C"G',
D = D'G" + D"G', G = G'G", (3.9)
A = A'G" + A"G' + B'C" + B"C' - 2D'D",
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where the primed quantities refer to the networks r' and r". The last of these equations
follows from the earlier ones after use is made of (2.5). Also, from (2.4) it follows that
A, E, F have the same decomposition law as B, C, D.

4. Factorable networks. Examples of networks exist in which a common factor is
present in only four or fewer of the network functions (2.3) without being a factor of
any of the remaining functions. However, if all five of the functions B, C, D, G, A which
occur in the impedance and admittance functions Zu , Zv2 , Z22 ; Fn F12, F22 of r
have a common factor, then it follows from (2.4) that all eight network functions must
have this common factor. (Of course, this factor does not appear in the impedance or
admittance functions). This same conclusion also holds if G, A and any three independent
functions chosen from A, B, C, D, E, F have a common factor. We call a network V
(with three external nodes) a factorable network if all eight network functions A, B,
C, D, E, F, G, A have a common factor.

Examples of factorable networks may be constructed without difficulty as follows:
Let T' be any network with external nodes 0, 1, 2 and let r* be any network with an
external node a. Let r', r* have no common nodes.

(i) As a first example, modify r* by adding the external node 0 connected to node a
by an admittance y. Call the modified network r" and let r be the network consisting
of T' and T" with common node 0. Then, as indicated in [3, p. 63], A of T may be par-
tioned as

A =
A' 0

Hence

A = A'A", B = B'A", C = C'A", D = D'A", G = G'A",

where the unprimed quantities refer to T and the primed quantities to r', r". Thus
T is a factorable network. Of course, a similar result obtains if nodes 1 or 2 play the
role of node 0 in the above discussion.

(ii) As a second example, modify F* by adding external node 0 (unconnected to the
other nodes of r*) to form r". Connect node a of Y" to any internal node b of r' by
an admittance y to form the network T. Then the A of T may be partitioned as

A =

-y\b

-yr2b

■y'bi - y'b2 ■ ■ ■ y'bt + y

0 0 • ■ • —y

0

0

-y 0 • • • 0

y'a'a + y - y'a'a + 1 -y'a't

— 2/a+l.a

■y'i'a

Now decompose column b into the sum of the columns [ — y'lb, — y'2b • ■ • , y'bb, 0, 0, • • • 0]
and [0, 0, • • • , y, —y, 0, • • • ,0] and decompose column a similarly. Then A may be
written as a sum of determinants
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A'-

A =
-ya.a +1 • • • —y«\

+

This leads to

a„;
Kb

+
A'

" 2/61 - 2/62

0

y -y
-y v -y„.a+1 ••• -y"t

A''

+

A bb

Vb 1 yb2

0

y

zl

A = yA'A'a'a + A'A" + 0 + 2/Aj6A"

Since node 0 in T" is not connected to the rest of T" it follows from [3, p. 60] that A" = 0.
Hence the last equation becomes A = yA' A'a'a . Similarly

B = yB'A'a'a , C = yC'A'JL , D = yD'A'l , G = yG'A"a
so that I1 is a factorable network.

These two examples show that any network r' may be converted into a factorable
network I1 by connecting any node of I1' by an admittance to one node of another
network r" having no common nodes with r". It is clear that the impedances Zu ,
Z12 , Z22 and admittances Yu , Yl2 , YTl of both r' and T are equal. However not every
factorable network may be reduced to an equivalent network by the series removal at
one of its nodes of an extraneous network. For example, the network T0 whose A is
given by

s + 1 0 —s —1

Ao —
0 s + 1 -s -1

—s —s 2s + 2 0

-1 -1 0 2s + 2

is factorable (with common factor s + 1) but cannot be reduced in this manner to a
non-factorable network. It is shown in [3, p. 65] that this network is not equivalent
to any RC non-factorable network.

It is known that deletion of any factors from any of the functions A, B, C, G, A of
an RC network always leaves a polynomial with positive coefficients. However examples
have been given in which negative coefficients appear in D/f where / is a common factor
of D and three other functions. Networks illustrating this property are given below,
of which example 3 has not appeared before.

Exam-pie 1. [6, p. 92] B, C, D, A have common factor s + 1. D/(s + 1) = 30s2 —
15s + 30.

A =

s + 1 0 -1 -s

0 3s + 3 -3 -3s

-1 -3 10s + 5 0

-s -3s 0 5s + 10
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Example 2. [3, p. 64] C, D, G, A have common factor s + 1. D/(s + 1) = 4s2 —
s + 4.

10 -1 0 0

0 s + 1 0 -1 -s

A = -1 0 2(s + 1) -1 -s

0 -1 -1 4s + 3 0

0 —s —s 0 3s + 4

Example 3. B, C, D, G have common factor s + 1. B = C = (s + l)(32s3 + 116s2 +
85s + 12), D = (s + 1)(4s2 - s + 4) G = (s + l)2(32s2 + 104s + 32).

10-1 0 0 0

0 10 -10 0

-1 0 2(s + 1) 0 -1 -s

0-1 0 2(s + 1) -1 -s

0 0 -1 -1 4s+3 0

0 0 -s -s 0 3s + 4

These three examples include all essentially different combinations of four network
functions (including one transfer admittance function) to which a common factor
may be assigned. This suggests the question whether negative coefficients can occur
when / is a common factor of more than four network functions. Otherwise, does a
factorable RC network exist with common factor / such that D/f, E/f or F/f has negative
coefficients? We investigate aspects of this problem in the sequel.

5. RC series connected factorable networks. We now consider an RC network r
which consists of an admittance y at node 0 in series with a network r". Since the RC
impedance 1/y may be considered as a series connection of simpler elements, each
element being an R and C in parallel, we may assume without loss of generality that
our y corresponds to the first of these elements, incorporating the others into T', and
write y = a + bs. Also assume that T is factorable, so that the network functions A,
B, C, D, E, F, G, A of T have a (non-constant) greatest common factor

/(s) = ni
where the x, are the distinct factors of /(s). The relation between the network functions
of F and T' is given by (3.7). Concerning these networks we now prove the theorem:

Theorem 5.1. Let RC network T, consisting of admittance y = a + bs in series with
T' be fadorable with common factor /(s). Then the reduced network V is factorable with
common factor f'(s) = f(s)/g, where g is the greatest common divisor of f(s) and y.

We consider two cases for each distinct factor x{ :

(i) Xi does not divide y. Then it follows from the first line of (3.7) that A', E', F', A'
are divisible by xand then from the remaining equations of (3.7) that B', C', D', G'
are also divisible by x"\
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(ii) Xi divides y. Then, since y = kx{ , where k is a constant, it follows from (3.7)
that A', E, F', A' are all divisible by x"', where = p, — 1. Also, from (3.7),

?. = I . 9L
a y a'"

Now B/A, 1/y and B'/A' are all RC impedances. Also the residue of 1 [y at xt = 0
is positive and the corresponding residue of B'/A' cannot be negative. Hence B/A has
a pole at x,• = 0. Since B is divisible by xA must be divisible by x*<+1. Then, from (3.7),
A' is divisible by xIt follows from (3.7) that B', C', D' are all divisible by Finally,
since

g i cr_
A y Ar

we find in a similar manner that G/A has a pole at rc,- = 0, so that A must be divisible
by £®i+1. Then, from (3.7), we must have that G' is divisible by x°'. Consequently all
the network functions of r' have the common factor x°' in this case.

The results obtained in cases (i) and (ii) also hold if the role of node 0 is played by
either node 1 or node 2 since only the names of the nodes are involved. This completes
the proof of Theorem 5.1.

The preceding discussion also shows that, when y is removed at node 0, A' and A'
are each divisible by /(s). Consequently, we find from (3.7) that

E = yE F = y r
f g f ' / ~ g'f

D _ A^ y jy_
f ~ 1 + g'f

Now y/g and A'// are polynomials in s with positive coefficients. (The same is true for
A'/f, B'/f', C'/f, G'/f,). Then the preceding equations show that D/f, E/j or F/f can
have a negative coefficient only if the same is true of the corresponding quotient D'/f,
E'/f' or F'/f' respectively. We state this result in

Theorem 5.2. The -presence of a negative coefficient in any of the quotients D/f,
E/f or F/f of an RC series connected factorable network T implies the presence of a negative
coefficient in the corresponding quotient D'/f, E'/f or F'/f respectively of the reduced
network F'.

6. RC parallel connected factorable networks. We now consider an RC network r
which is the parallel connection of two networks I" and r". Also assume that T is
factorable so that its network functions A, B, C, D, E, F, G, A have a (non constant)
greatest common factor

m = ii xv, 7.- > o (6.i)i
where the x( are the distinct factors of /(s). The dependence of the network functions
of T on those of r' and T" (which we indicate by one and two primes respectively) is
given by (3.9). In particular, since G = G'G", f(s) must divide G'G" so that we may write

(?' = (?,- n G" = e2-II xV, (6.2)
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where G\ and G2 are each relatively prime to /(s) and

«, + Pt ^ 7. , ai = 0, Pi ~ 0 (6.3)
Now define the functions

<t>(s) = Ilzr , Hs) = II xV, f(s) = n^'. (6-4)
where the definition of the non-negative exponents p, , g,- , r, for each value of i depends
upon which of the following mutually exclusive, exhaustive inequalities holds for that
value of v.

a.- ^ 7i , Pi ^ 7> , (6.5)!

^ 7< > Pi , (6.5)2

/3,- ̂  7i > ai , (6.5)3

7i > , 7> > /?.' • (6.5)4

In these four cases, the corresponding values of , q{ , r, are:

Pi = Qi = 0, Ti = 7,- , (6.6)!

Pi = 7. - Pi , ?. = 0, r, = 0, , (6.6)2
p.- ==0, 5i = 7, — a, , r; = , (6.6)3

Pi = 7i ~ Pi , qi = 7.' — «. . r. = + |8i — 7i . (6.6)4

respectively. It is clear from (6.1), (6.4) and (6.6) that

/ = <t>M- (6.7)
Also, as follows from (6.2), (6.4) ,(6.5) and (6.6), G' and G" are divisible by f# and

respectively, so that we may write

G' = MG'*, G" = MG"*. (6.8)
In the sequel, we shall have occasion to develop proofs which subdivide according

to the different inequalities (6.5). When this occurs, (6.5)3 will be omitted from the
discussion since any proof for case (5.6)2 is valid for (6.5)3 after interchange of the
roles of ai and p{ .

We shall prove the following theorem concerning the parallel connected network T:

Theorem 6.1. Let RC network F consisting of the parallel connection of networks
T' and T" be factorable with common factor f(s). Then the component networks I", r"
are also factorable with common factors <l>(s), \p(s) respectively, where* f = 1

We first prove that the network functions B', C', D'; B", C", D" have the common
factors 4>(s), \p(s) respectively; that is

B' = <t>B'*, C' = 4C'*, D' = <f>D'*,
B" = VBC" = $C"*, D" = <PD"*.

Since all the factors are relatively prime, it will suffice to show that the functions B',

*The factor functions <t>, <p, f are defined by (6.4), (6.5) and (6.6).
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C', D' and B", C", D" are divisible by the factors xand x'' respectively for each value
of i; that is,

B' = xT"B[ , B" = xV+r'B'/,

c = xVi'+"'C'i , C" = xV+T'C:', (6.10)

D' = xV+"D[ , D" = xV^'D'Z,

where B' , C[ , D\ , By , C" , D\' are all relatively prime to x, and

o", ̂  0, r, ^ 0. j = 1,2,3 (6.11)

This is immediate for factors arising under (6.5)x . To discuss the remaining cases, we
begin with B = B'G" + B"G' from (3.9) which, in virtue of (6.1) and (6.2), we may
write as

xJ'Bi = xl'B'G'/ + x"'l3"G'i (6.12)
where

B = xVB, , G' = xaiG[ , G" = x^'G'/ (6.13)
and G' , G'/ are relatively prime to x{ .

For a factor satisfying (6.5)2 , division of both members of (6.12) by x1' shows that
B'G'/ is divisible by x1'~fii. Since G\' is prime to x{ , it follows from (6.6)2 that B', B"
obey (6.10), (6.11) in this case. If we begin with the equation of (3.9) for C or D instead
of the one for B, we find similarly that C", D' and C", D" satisfy (6.10), (6.11) in case
(6.5)2 .

To fix our ideas in case (6.5)4 , we assume without loss of generality that a{ S: /3,- .
Then division of (6.12) by xleads to the conclusion

B' = , B" = xYBY, (6.14)
where 2: 0, ej 2: 0 and B\ , B'' are prime to x{ . Similarly,

pr   p//   <9 firrvy Xj ^ ^ ^0 15)

D' = xV^'^'D'i , D" = xl'D'/,

where S2 , S3 , e2 , e3 are also non-negative and C' , C'/ , D' , D'/ are all prime to .
Now the ratios

B/ B[ C[ = ,,.fl C[Gf G'- ' G/ G'- '
(6.16)

rrB" _ .^BY C'/ =q/t Qft ' (j/' '

are all RC driving point admittances and the ratios

7y r>' D" D"±L Ts'-^ ±Ll = r"~K' Hi- (p. 17)
(j7/ ' /

are 22 C transfer admittances. It is known [1,4] that the poles of such functions must be
simple and, for driving point admittances, the zeros must also be simple. Consequently
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|«i - ft| ^ 1, \Sa ~ jS.-l 1, |«i - ft| =S 1, |e2 - ft| g 1,
S3 ̂  ft - 1, «3 = ft - 1.

Since these inequalities imply 5, Si 0,. — 1, e, =; ft — 1 where j = 1, 2, 3, it follows
from (6.3) that

5j ^ ji — a, , e, ^ ji — oii , j = 1,2,3 (6.18)

unless 7i — . Suppose that 7,- — a, — p, . Now, from (6.13), the EC admittance

B _ yi-cti-Pi Bj Bj•£*ri si'ry" ri'n" '
yj urtur1

has no pole at x{ . Also, from (3.9),

B _B' B^_
G~G7 0"

so that B'/G' and B"/G" each cannot have a pole at x{ since the residue at a pole must
be positive. It follows from (6.16) that Si ^ ft = yt — a,, e1 S: ft = y; — a,- . Similarly,
C/G has no pole at x{ and, from (6.16), 52 ^ 7< — a{ , «2 =£ 7,- — • Finally, it follows
from the residue condition [1, 4] that D/G has no pole at and, from (6.17) that S3 S:
7i — a, , e3 ^ 7i — a,- . This means that (6.18) is true without restrictions. Then equa-
tions (6.14) and (6.18) are equivalent to (6.10), (6.11), after account is taken of (6.6)4 •
This completes the proof of (6.9) or, alternatively of (6.10), (6.11) for all possible cases.
Of course, as follows from (2.4) and (6.9), A', E', F'; A", E", F" also have the common
factors <f>{s), ^(s) respectively.

In the sequel, we prove that A', A" are divisible by <£(s), \p(s) respectively; that is

A' = <f> A'*, A" = (6.19)
If we write

A' = xVA't , A" = xl'AV (6.20)
where ^ 0, vt S; 0 and A[, A,'' are each relatively prime to xt, then (6.19) is equivalent
to

Ui ^ Pi , V; ̂  9, , (6.21)

for all values of i. Clearly (6.21) is true for those values of i where (6.5)x is satisfied,
since (6.6) 1 holds.

Also, from (6.10), (6.13), (6.20)

B' +a,-ai m B^_ BY_Q' Q' Q" Qf'

BL_ B\ B^_
A' ~ Xi a;. a" ~ X- A'/

and analogous equations obtain with C", D'; C", D" replacing B', B" respectively.
Now these ratios are all RC admittances or RC impedances and consequently have
simple poles and, for driving point functions, simple zeros. Consequently

[«.- — Pi ~ 071 ̂  1, 1/3,- — Qi — Tj\ S 1, j = 1,2 (6.22)
C3 ^ «.• ~ Pi ~ 1, T3 = Pi Qi — 1,
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and

Ui t p< + <Tj — 1, v< t q; + Tj — 1. j = 1,2 (6.23)

We restrict the subsequent discussion to the case

«r, = 0, r, = 0, j = 1,2 (6.24)

since otherwise (6.23) would establish (6.21) and attain our objective. From (6.20),
(6.22), (6.23) and (6.24),

A' = xV~1+""^[ , A" = xV~1+w'AY, wi^O, w2 ^ 0 (6.25)

k-Pi|s£l, |& ~~ S.-1 = 1. (6.26)
are true for those factors x{ still to be considered.

If (6.5)2 is true for some i, then from (6.3) and (6.6)2 , we find that (6.26) becomes

+ Pi — 7. = 0 or 1, Pi = 0 or 1. (6.27)
If, Pi — 0, then the first equation (6.27) becomes a< = 7i since (6.5)2 holds. Then the
last equation of (3.9), after simplification by (6.10) and (6.13), shows that A' is divisible
by x*', proving (6.21) for this subcase. Consequently we may restrict our consideration
of (6.27) to Pi — 1. After using (6.5)2 , the remaining condition (6.27) becomes

Pi — 1, 7 (6.28)
for case (6.5)2 .

If (6.5)4 is true for some i, then (6.3) and (6.6)4 transform (6.26) into the equivalent
condition a{ + /3,- — 7i = 0 or 1. However, if 7< = 0, then the equations

B'C' - D'~ = G'A', B"C" - D"2 = G"A",

which are analogous to (2.5), readily yield (6.21) after substitution from (6.6)4 , (6.10),
(6.13), (6.20) and (6.24). Consequently we restrict our discussion of case (6.5)4 to the
remaining condition

*i + Pt- 7. = 1- (6.29)
Returning to case (6.5)2 , subject to (6.28), we find that the last equation of (3.9)

becomes

z,A+ = xVWi' + x\+v"b['G'i + (.B[C'i' + B'i'C'i - 2D'+D"+) (6.30)
after using

A = Xi'A+, D' = xPi'D'+, D" = x"i'D"+, (6.31)

and (6.6)2 , (6.10), (6.13), (6.24) and (6.25) and then dividing by x7i_1. Similarly, for
case (6.5)4, after use of (6.6)4, (6.10), (6.13), (6.24), (6.25) and (6.29), the last equation
of (3.9) becomes

x{A+ = xTA[G[' + xTA'i'G'i + {B[C[' + B'i'C'i - 2D'+D"+). (6.32)
Now, for case (6.5)2 , using (6.6)2 , (6.10), (6.13), (6.24) and (6.28)

B'_ B'i _ g'(s) b'
6" XiG'i G[ Xi (6.33)
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where the last expression is the partial fraction expansion and b' > 0 is the residue of
the admittance B'/G' at the pole x{ = 0. Equation (6.33) is also found to be true for
case (6.5)4 , after use of (6.6)4 , (6.10), (6.13), (6.24) and (6.29). Also, in the same way
for both cases, we find

G" XiG" G7 xt { 6 }
where b" > 0 is the residue of the admittance B"/G" at the pole x< = 0. Equations
similar to (6.33), (6.34) also obtain for C'/G', D'/G'; C"/G", D"/G" respectively in-
volving the residues c', d'; c", d" respectively.

For case (6.5)2,

B'C' - D'2 = G'A' = xVG'ixV-**'1 A{ = xV'^'GM

Division by G'2 yields, after use of equations like (6.33),

xV^ _ B'C' - D'2 h(s) (b'c' - d'2)
x2G'i G'2 xtf] + xi

and finally

= Ms) + - d")G: - K.) + »V - d^' , (6.35)

where h(s), k(s) are polynomials and (G<)0 is the value of G'< for x{ — 0. In a similar
manner

B'C" + B"C' - 2D'D" _ xV'iB'iC'/ + B['C', - 2D'+D"+
G'G" ~ xV'G'jGV

BW + B'/C' - 2D'+D"+
x\G\G"

Use of equations like (6.33) and (6.34) in the above equation yields

BW + B'/C: - 2D'+D"+ = z(s) + (b'c" + b"c' - 2d'd")(G't)n(G'i'\ (0 30)
Xi Xi

where l(s) is a polynomial and (G")„ is the value of G" for x( = 0. For case (6.5)4 ,
parallel calculations to the above (but involving different details) establish the validity
of the same equations (6.35) and (6.36) as well as of

= m(s) + ~ d"2WV)0
Xi Xi

where m(s) is a polynomial.
For case (6.5)2 , we substitute (6.35) and (6.36) in (6.30). This yields

A+ - x"'A['Gi = H(s) + [(b'c' - d'2) + (b'c" + b"c' - 2d'd")](G'UG'i')a/xi
where H(s) is a polynomial. Since (G'i)0(G'i')0 ^ 0, we must have

(b'c' - d'2) + (b'c" + b"c' - 2d'd") = 0. (6.38)
Now (b'c" - b"c')2 ^ 0 implies b'2c"2 + 2b'b"c'c" + b"2c'2 ^ 4b'b"c'c". Since b', b",
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c', c" are all non-negative, this last inequality implies b'c" + b"c' 2: 2 y/ b'b"c'c" ^
2d'd". The final inequality follows from the residue conditions for RC admittance
functions, b'c' — d'2 Si 0, b"c" — d"2 ^ 0. Consequently (6.38) implies that

b'c' - d'2 = 0, b'c" + b"c' - 2d'd" = 0 (6.39)
Substitution of (6.39) in (6.35) shows that Wi 2: 1, so that from (6.25), the truth of
(6.21) is established for case (6.5)2 .

For case (6.5)4 , we substitute (6.35), (6.36) and (6.37) in (6.32). Consequently

A+ = K(s) + [(b'c' - d'2) + (b"c" - d"2) + (b'c" + b"c' - 2d'd")](G[)a(G[')0/xi ,

where K(s) is a polynomial. Therefore

(b'c' - d'2) + (b"c" - d"2) + (b'c" + b"c' - 2d'd") = 0. (6.40)

The discussion following (6.38) shows that (6.40) implies (6.39) as well as

b"c" - d"2 = 0 (6.41)

Substitution of (6.39) and (6.41) in (6.35) and (6.37) indicates that Wi 2: 1, w2 2: 1.
Then, from (6.25), the validity of (6.21) is established for case (6.5)4 . This completes
the proof of (6.19). The conclusions (6.8), (6.9) and (6.19), which have been proved
above, establish the validity of Theorem 6.1.

According to (3.9),

D = D'G" + D"G'.
If we write D = j(s)D* and use (6.7), (6.8) and (6.9), the preceding equation becomes

D* = D'*G"* +
It follows from this equation that D/f can have a negative coefficient only if the same is
true of at least one of the quotients D'/<f> or D"/\p. Exactly similar conclusions hold
for E/j and F/f. We state this result in the theorem:

Theorem 6.2. The presence of a negative coefficient in any of the quotients D/j,
E/f, F/f of an RC parallel connected factorable network r implies the presence of a negative
coefficient in the corresponding quotient D'/<t>, E'/<f>, F'/<j> respectively of the component
network F' or in the corresponding quotient D"/\p, E"/\j/, F"/if/ respectively of the com-
ponent network F".

7. RC series-parallel networks. When a series-parallel network is simplified by
series removal of an admittance at an external node, the remaining network is reduced
by one internal node. When the network is decomposed into two parallel networks,
either one of them is a II network or the number of internal nodes in the decomposed
networks is less than in the composite network. Since at least one of these methods of
simplification is possible at each stage, the reduction in the number of internal nodes
of a finite series-parallel network means that eventually a stage will be reached where
the reduced networks are all simple T-networks or II-networks. A simple calculation
of D', E', F' for these networks shows that there is no possibility for the appearance
of any negative coefficients in D'/f, E'/f, or F'/f. These remarks in conjunction with
Theorem 5.2 and Theorem 6.2 lead directly to the following new realizability criterion
for RC series-parallel networks.
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Theorem 7.1. For an RC series-parallel factorable network with common factor
f(s), the ratios D/f, E/f and F/f are polynomials with non-negative coefficients.

It is possible that some coefficients in these ratios may be zero. Thus the network
r0 for which A0 is given in §4 is an RC series-parallel factorable network with /(s) =
s + 1 for which D/f = 2s2 + 2. We now explore some consequences of Theorem 7.1.
We first prove the following two theorems:

Theorem 7.2. Let T be an RC series-parallel network with admittance functions
B*/G*, C*/G*, D*/G* written so that B*, C*, D*, G* have no common factor. If Gx is the
greatest common divisor of G* and B*C* — D*2, then D*G*/Gi , (B* — D*)G*/GX and
(C* — D*)G*/G1 are polynomials with non-negative coefficients.

Theorem 7.3. Let r be an RC series-parallel network with impedance functions
B+/A*, C+/A+, D+/A+, written so that B*, C+, D+, A+ have no common factor. If is
the greatest common divisor of A+ and B+C+ — D+2, then D+A+/Ai , (B* — D+) A+/At
and (C+ — .D+)A+/Ai are polynomials with non-negative coefficients.

The proof follows. Let T be an RC series-parallel network for which the network
admittance functions Fn , Yl2 , Y22 are specified. According to (2.7), this information
determines the ratios of B, C, D to G. Let

B = fB*, C = fC*, D = /£>*, G = fG*, (7.1)
where B*, C*, D*, G* have no common factor and are thus determined by the admittance
functions up to a multiplicative constant. Suppose that

B*C* - D*2 = G1H, G* = G,G2 , (7.2)

where* G^ is the greatest common factor of B*C* — D*2 and G* so that G2 and H are
relatively prime. Now, from (2.5), (7.1) and (7.2),

BC - D2 = f(B*C* - D*2) = fGJI = GA = fG1G2A,
so that, since G2 , H are relatively prime and fH = G2 A, it follows that A = 4>H and
consequently / = <pG2 , where <f> is arbitrary. It follows from (7.1) that the most general
network functions consistent with the given admittance functions are

B = <f>G2B*, C = 4>G2C*, D = 4>G2D*, G = ^G.Gl , A = <f>H. (7.3)
In a similar manner, if the impedance functions Zu , Z.2 , Z22 are specified for r,

from (2.6), they determine functions B+, C*, D+, A+ without common factor. Proceed-
ing as above with the roles of A and G interchanged, it follows that the most general
network functions consistent with the given impedance functions are

B = 4>A2B+, C = 4>A2C+, D = <f>A2D+, G = 4>H, A = <f>AiA2 . (7.4)
In these equations 4> is arbitrary and

B+C+ - D+2 = AiH, A+ = A,A2 ,

where At is the greatest common factor of B+C+ — Z)+2 and A+. In both (7.3) and (7.4),

*An equivalent definition is that Gi contains all poles of the y,-,- where the residue condition is
satisfied with equality sign; G2 contains all other poles.
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the greatest common factor of all the networks functions is <£. As a result of Theorem
7.1, this proves that D*G2 , (B* - D*)G2 , (C* - D*)G2 and D+A2 , (B+ - D+) A2 ,
(C+ — D+) A2 are polynomials with non-negative coefficients. This completes the proof of
the theorems.

The preceding discussion may also be used to establish the following theorem:

Theorem 7.4. Let T be an RC series-parallel network with admittance junctions
B*/G*, C*/G*, D*/G* and impedance junctions B*/A*, C*/A*, D*/A* written so that
B*, C*, D*, G*, A* have no common jactor. Then all the coefficients oj D*, B* — D* and
C* — D* must be non-negative.

The proof follows. For any network T, with given admittance (or impedance) func-
tions, the network functions may always be written in the form of (7.3) or, alternatively,
of (7.4). Consequently when both the admittance and impedance functions are written
in simplest form but subject to the condition that corresponding functions of each kind
have the same numerator, we obtain, from (2.6) and (2.7),

_ GtB^ _ G^_ _ GJ)^
■*11 /"I /"y2 > -*22 sy2 ) * 12 /"i »

0"jLT2 LriLr2 ^1^2

7 _ Ml 7 _ Ml 7 _ Ml
^11 — > ^22 — jjr J "12 — jj '

Since B*, C*, D*, G* are relatively prime, the only common factor of the is G2 ,
but G2 is relatively prime to II. Hence no further simultaneous reduction in both the
Yn , Zij is possible. If T is an RC series-parallel network, the common numerator
G2D* of — Y12, Z12 as well as the differences between the numerators of Fu , V22 and the
numerator of F12 must have non-negative coefficients, in accordance with Theorem 7.2.
This proves the theorem.

When the five network functions of r have all common factors deleted as in Theorem
7.4, the resulting functions B*, C*, D*, G*, A* may still have common factors when
taken in groups of four. Let B*, C*, D*, G* and B*, C*, D*, A* have the greatest common
factors n and v, respectively. Since all five functions are relatively prime, it follows
that the pairs n, v; ju, A* and v, G* are each relatively prime. Then we may write

B* = nvB\ C* = nvC\ D* = ,xVD+, G* = ixG0 , A* = i>A0 .

From (2.5) and the preceding equations,

n2v2(B+C+ - D+2) = nvG0u0

Hence p. divides G0 and v divides A0 so that

G* = n2G\ A* = v2A+, B+C+ - D+2 = G+A+

Theorem 7.4 asserts that the coefficients of fivD+ are all non-negative. However
this need not be true of the reduced numerator of — F12 = vD+/^G+ when all three
admittance functions Yit are written in simplest form with common denominator jxG+,
nor of the reduced numerator of Zi2 = v-D*/vA+ when all three impedance functions
Zn are written in simplest form with common denominator vA+. Thus in the illustrative
examples of §4, which all refer to RC series-parallel networks, the reduced numerator
of Zi2 has a negative coefficient in example 1 and the reduced numerator of — F12 has
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a negative coefficient in example 3. Example 2 illustrates a situation not discussed above
in which C*, D*, G, , II but not B* all have a common factor. When this factor is re-
moved, the common numerator of — Y12 and Zl2 has a negative coefficient.

8. Some realizability questions. We now consider some aspects of the synthesis
problem. For a set of admittance functions to be realized by an RC series-parallel net-
work, the previously known residue and coefficient conditions must be satisfied. In
addition, the new realizability condition of the preceding section (for example, Theorem
7.2), which is independent of the earlier ones, must be obeyed. But no general realiza-
tion of admittance functions obeying these conditions exists. Most series-parallel synthesis
procedures do little more than describe the necessary extraction of series and parallel
components without giving any theoretical basis for when and how this will be pos-
sible. The synthesis technique of Ozaki [5] lays such a foundation but is applicable
primarily to a restricted class of symmetric RC two-ports. A simple application of Ozaki's
method extends the synthesis possibilities as follows:

Theorem 8.1. Let Fn , F22 be two RC admittances and let —Y12 — D*/G* be the
quotient of two polynomials without common factors, where all the coefficients of D* are
non-negative, F12(0) = 0 if F1I(0)F22(0) = 0, and each pole of F12 (possibly, including <»)
is also a pole of both Fu and F22 . Then an RC series-parallel network exists which realizes
Fu , KYl2 , YM for all sufficiently small positive values of K.

To prove this result, we first decompose the Fif in any manner into a sum

F„ = £ <*> Fi ,■ ,
k

such that all the numerators of the WYJ2 are Hurwitz polynomials and each pole of
ct)F12 is also a pole of wF,, and <t) F22 . This decomposition is always possible. Thus
one possibility, usually not the best, is the following: If

m

Z Dhs
F,2 =

n*
M ft-0

0* G* '

c*)FJ2 = Dks /G*, (t) Fn = Fu/(m + 1), (t) F 22 = F22/(wi + 1),

k = 0, 1, 2, • • • , m.
Having chosen the (i) Fi; , expand each ,k) Y u so as to exhibit its residues:

>Fn — (k)a„ + (fcjdooS + £
(k)aiS

i-i s + (h) Si

<k)biS
(*)Fi2 — U)b0 + (i)fecoS + ,

1 = 1 S -+■ (k) o,

nk

<i, F22 = (i)C0 + (t)CcoS + 2 'J^LJi-i s -(- (t)Si

Choose K0 so small so that, for each value of k,

(t)Qo ^ Ko(k)bo , (t)Co ^ K0(k)b0 , (t)Ctco ̂  Ao<i)6co , (t)C„ > Kowba ,

(k)0-l ^ K0 |(i)6j [, (i)C; > K0 |(J)6; | , I = 1 , 2, • • • , Ut
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This is possible since, according to the hypothesis of the theorem, if any of the left
members of the inequalities are zero, the corresponding right members are also. Now
write

■h- <»y = + wbaS + z ,
A0 1 = 1 S "t" (4, 0;

(hFj = (i)Fu fk)Y, ik)Y 2 — (k) Y 22 (k)Y,

where, according to the preceding inequalities <t)Fi , WY2 are RC admittances. Now
use the method of Ozaki to synthesize the admittance functions

Y[, = Y'22 = WY, Y'12 = K0WY12,

and modify the resulting network by adding shunt admittances w between nodes 1
and 0 and (t) Y2 between nodes 2 and 0 to form an RC series-parallel network . Then

realizes the admittance functions «)Fn ,WY22 , K0 (MF12 • The parallel connection
T of the T* then realizes the admittance functions Fn , Y22 , K0Y12 .

To realize Yu , F22 , KY,2 , where K ^ K0 , we proceed as follows*: Change the
admittance level in r by the factor K/K0 to produce T' whose admittance functions
are KYn/K0 , KY22/K0 , KY12 ■ Modify r' by introducing two new branches joining
nodes 0 and 1 and nodes 0 and 2 respectively, whose admittances are (1 — K/K0)Y11
and (1 — K/K0) F22 respectively. Then the admittance functions of the modified network
are Yu , F22 , K YV, . This completes the proof of Theorem 8.1.

In this synthesis, there is no theoretical determination of the maximum value K0
which can be realized. A more serious defect in the theory is the lack of a complete
description of all the possible D*'s which are realizable by series-parallel networks by
some method. The difficulties associated with this problem arise from the following
circumstances. Series-parallel networks exist whose admittance functions Yit , specified
as in (7.1), are such that the reduced numerator D* of — F12 has negative coefficients
(even if, as demanded by Theorem 7.2, the coefficients of D*G2 are non-negative).
Example 3 of §4 is such a network. For admittance functions of this kind, there is no
general series-parallel synthesis technique and consequently we cannot decide apriori
whether such functions can or cannot be realized by series-parallel networks.

Actually, not all admittance functions which obey the residue and coefficient condi-
tions and also the new conditions of §7 (such as Theorem 7.2) can be synthesized by
series-parallel networks. That is, all the preceding conditions are necessary but not
sufficient for RC series-parallel realizability. We now give two illustrations of this fact,
omitting the relevant proofs which will appear elsewhere.

Example 1.

T7- I 1 ir 1 1 CS T7" 7 17F„ = a0 + a„s + ——- , F22 = c0 + c^s + , - Y12 = b0 + bms -s + 1 s+1 s + i

where all the letters are positive. It may be shown that all such F,-,- which satisfy the
residue and coefficient conditions may be synthesized ij and only if the numerator of
— F12 has non-negative coefficients. This last condition is equivalent to

0 ^ b ^ &o -f- ba, .

*An alternative method is to replace K0 by K throughout the preceding synthesis.
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However, if the pole s = — 1 is not compact, Theorem 7.2 requires that — (s + 1) F12
have non-negative coefficients or, in equivalent terms, that

0 < b g b0 + ba + Min (b0 , b„).

Thus values of b in the range

b0 + b„ < b ^ 60 + b„ + Min (b0 , &„),

generate admittance functions Ya (having a non-compact pole at s = —1) which
satisfy all the known necessary conditions but cannot be synthesized by a series-parallel
network.

Example 2.

_Y b0s3 -f- bx y _ bns3 -f- OiS2 -f- a2s b3 „ _ bns3 -f- cts2 -f~ c2s -f- b3
12 " (« + 7i)(* + 72) ' (s + 7i)(s + 72) ' 22 ~ (s + 7i)(s + 72)

where all the letters are positive and ax , a2 , cx , c2 are chosen so that Fn , F22 are i2C
admittances, all the residue conditions are satisfied with equality signs and the coefficient
conditions are obeyed. Since b0 > 0, b3 > 0, Theorem 7.2 is also true. Nevertheless,
it can be proved that these F,-,- cannot be realized by any RC series-parallel network.

The preceding discussion proves that Theorem 7.2, taken in conjunction with the
previously known residue and coefficient conditions still does not constitute a set of
sufficient conditions for series-parallel synthesis. These examples suggest an additional
problem. Do RC admittance functions exist, whose synthesis demands a more general
structure than the series-parallel structure? To date, no counter examples are known
to the ten year old conjecture of Darlington [2, p. 295] that every realizable set of RC Fi;
may be synthesized by a series-parallel network. But neither has the validity of the
Darlington conjecture been established. A proof of the truth or falsity of this conjecture
may depend upon the new necessary property of series-parallel networks.
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