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AN ALGORITHM FOR FINDING SHORTEST ROUTES FROM ALL SOURCE
NODES TO A GIVEN DESTINATION IN GENERAL NETWORKS*

By JIN Y. YEN (University of California, Berkeley)

Summary. This paper presents an algorithm for finding all shortest routes from
all nodes to a given destination in iV-node general networks (in which the distances of
arcs can be negative). If no negative loop exists, the algorithm requires \M(N — 1)
(N — 2), 1 < M ^ JV — 1, additions and comparisons. The existence of a negative loop,
should one exist, is detected after \N{N — \){N — 2) additions and comparisons.

1. Introduction. All shortest routes from all nodes to a given destination in iV-node
networks can be solved in two different fashions. When the distances of arcs are all
positive the problem can easily be solved by an efficient algorithm proposed by Dijkstra
[4] which requires roughly 27V2 additions and comparisons. But when the distances of
some arcs are negative (yet no negative loop exists) the problem becomes harder and
can only be solved by the relatively inefficient and sometimes complicated algorithms
proposed by Ford [8], Moore [11], Bellman [1], Floyd [7], Murchland [12], Dantzig [3],
Dantzig, Blattner and Rao [2], Hu [9], Dreyfus [5], and others—in which as many as N3
additions and comparisons can be necessary. (For the algorithm of [2] the upper bound
on calculations may be a little under N3 but well over 5N3. See Dreyfus [6] for reference.)

The purpose of this paper is to present an algorithm for solving the problem in
which the distances of some arcs are negative. The advantages of the new algorithm
are that, if no negative loop exists, it requires at most (N — l)(N — 2), 1 < M i£
N — 1, additions and comparisons; and, if there exists a negative loop, it is detected in

(N — 1)(N — 2) additions and comparisons.
Remark. Note that when the distances of arcs are all positive, Dijkstra's algorithm

is superior to the new algorithm in most cases. Therefore, the new algorithm, in general,
should be applied only when the distances of some arcs in the network are negative.

2. Notation. In an iY-node network, let

(i), i = 1,2, • • • , N, be the nodes where (N) is the destination,
(i, j), i 5^ j, be the directed arcs from (1) to (j),
(?')-(i)-"' --(N), i j 7^ N, be the route from (i) to (N) passing through (;),••■,
ditj I 0, i j, be the distances of (i, j). If (i, j) exists, diti is a finite number; other-

wise, di j is considered equal to infinity,
•0 = [^i.j] be the distance matrix of the network,

i — 1, 2, • • • , N, be the lengths of tentative shortest routes from (i) to (N)
on the fctli iteration,

fi,i= 1, 2, • • • , N, be the lengths of shortest routes from (i) to (N).
3. Functional equations. By the principle of dynamic programming, /<, i = 1,

2, ■ • • , N — 1, are the set of values that satisfy the following system of equations:
/, = min,vi [/, + d,.,].

Our algorithm computes these values by means of the following iterative procedure:
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f" i = 1,2, ••• ,N, (1.1)
= min + dt.t , /{»-"],

i — N — 1, N — 2, ••• ,1, /<2i~u = /r_2), (1.2)

rr = min [/J2i) + d,..f. , /{»-"], » = 2, 3, • • • , AT, = /J""1', (1.3)
1 ̂  J < *

for fc = 1, 2, • ■• .

The iterative procedure of the algorithm is to be terminated when j\2k) = /J2*-1',
or /<2t+1> = /<">, t = 1, 2, • • • , N. Then /<2t), or /<2i+1>, t = 1, 2, • • • , N - 1, are the
lengths of shortest routes from (i), i — 1, 2, • • • , N — 1, to (AT).

If by the Arth iteration convergence has not occurred, a negative loop must exist
and the problem has no solution.

4. Proof. Suppose the shortest path from (i) to (N) passes through P nodes,
0 ^ P ^ N — 2, enroute. Let it be ■ ■~(NP)-(N), where (Ni), i =
1,2, • • • , P, are distinct nodes of the original network. The path can be divided into
M homogeneous blocks, 1 ^ M ^ N — 1, in which the numbers naming the nodes in
each block either form a strictly increasing or decreasing sequence. We can depict the
situation as follows:

(AO > (ATj) > (N,) > > (Nri)
1st homogeneous block of size

< (ATri + 1) < (ATri+2) < ... < (NJ >

2nd homogeneous block of size r2

(Nr *-, + >) (*)

A/th homogeneous block of size rM

(2.0)

For example, the path (l)-(3)-(5)-(4)-(2)-(6)-(7) consists of 3 homogeneous blocks
|(7) > (6) > (2)| < (4) < (5) | > (3) > (1)|.

In the 1st homogeneous block, since (N) > (A\) > (N2) > • • ■ > (ATri), the unique
and optimal lengths from (Nt), (N2), • • • , (NrJ to (N)—as shown by Parikh [13] and
others—are as follows:

= min [/, + d4.f] = min [j, + dt,, , diiN], i = N, , N, , • • • ,NW, , (2.1)
N£j>i N>j>i

which is contained in (1.2) for fc = 1 as follows:

/<1; = min [fr + diti , /S0)], i = N - 1, N - 2, ■ • • , 1, = fi?\
N>i>i

Therefore, the unique and optimal lengths from (Ar1), (N2), ■ ■ ■ , (Nri) to (N) are de-
termined in Iteration 1.

In the 2nd homogeneous block, since (a) /,■ , i = 2V\ , N2 , • ■ - , Nr, , are already
determined in Iteration 1, and (b) (Nri) < (Nri+1) < (NTl+2) < ••• < (NrJ, the unique
and optimal lengths from (Nri+1), (Nri+2), • , (AT,,) to (N) are as follows:

= min [/,- + d4., , i = Nrt + 1, Nrt + 2, • • • , Ntm (2.2)
ieNt ,JV«

1 £ i < »

which is contained in (1.3) for fc = 1 as follows:

/,<2) = min [/:2> + dt., , /.<"], i = 2, 3, • • • , N, /,(2) = /,(1).
1SI<»
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Therefore, the unique and optimal lengths from (Nri + 1), (TVri +2), • • • , (TVr,) to (TV)
are determined in Iteration 2.

As shown by (2.0), since M, the number of homogeneous blocks, is bounded by TV — 1,
the successive approximation of the shortest lengths from (i), i = 1,2, • • • , TV — 1, to
(TV) terminates in no more than TV — 1 iterations.

Therefore, the iterative procedure of the algorithm converges in finite steps and the
solutions thus obtained is unique and optimal.

Remark. Note that the necessary and sufficient condition for convergence is that
no negative loop exist in the network. If the algorithm does not converge in TV itera-
tions (i.e., /;'v~u 7^ j'f\ i = 1, 2, • • • , N) it is because there exists at least a shortest
route from some (i) to (TV) that has more than TV — 1 arcs. In other words, the network
contains at least a negative loop. In such case, no solution can be defined.

5. Illustration. Let a 5-node general network have the following D matrix.

1 2 3 4 5

Then the solution is to be obtained by applying the algorithm as follows:
Iteration 0. Obtain /|0), i = 1, 2, • • • , 5, as follows:

/r = di,. = 2,
/r = = 2,
no) = d3,5 = -i,

/i0) = d,.s = 3,

no) = d... = o.
Iteration 1. Starting from i — 5 toward i — 1 compute /"', i = 5, 4, ■ ■ • , 1, as

follows:

H" = /r = 0,
fi" = C = 3,
/3'1> = min [/I1' + ds,4 , /i0)] = min (3 + 1, — 1) = -1,

fi" = min [/<" + d2.4 , 1™ + d2.3 , /D = min (3 + 2, -1 + 4, 2) = 2,

fi ' = min [j") + d1:i , + d,,3 , + d\,2 , j\ ]

= min (3 + 0, -1 + 3, 2 + 1, 2) = 2.

Note that only the upper triangle elements enter into the computation in Iteration 1.
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Iteration 2. Starting from i = 1 toward i = 5 compute /-2), i = 1,2, • • • , 5, as
follows:

/;2) = />(1) = 2,

U2) = min [/{2) + d2.i , /<1J] = min (2 + 2, 2) = 2,

/f' = min [/{2) + d3, /r + 4.2 , /s1'] = min (2_+ 1. 2,+ 0, -1) = -1,

/i2' = min [/I2' + diA , fl2) + 4.2 , /f + 4.3 , /«"']

= min (2 + 2, 2 - 1, -1 + 3, 3) = 1.

1™ = 0.
Note that only the lower triangle elements enter into the computation in Iteration 2.

Iteration 3. Similar to Iteration 1, f-3), i = 5, 4, • • • , 1, are obtained as follows:
/<3> = o, /«> = 1, /<3> = -1, /<» = 2, j[3) = 1.

Iteration 4. Similar to Iteration 2, /|4), i = 1, 2, • • • , 5, are obtained as follows:
/:4> = i, n*' = 2, n4) = -l, = i, = o.

Note that /-4) = /J3), i = 1, 2, • • • ,5. This implies that fiti= 1, 2, • • • , 5, are
determined in Iteration 3. Therefore, the algorithm terminates. Then the lengths of
shortest routes from (i), i = 1, 2, 3, 4, to (5) are respectively equal to 1, 2, —1, 1.

The shortest routes can be obtained from the optimal policy table recorded in the
iterative process. They are as follows:

Shortest route from (1) to (5)
Shortest route from (2) to (5)
Shortest route from (3) to (5)
Shortest route from (4) to (5)

(1)-(4)-(2)-(5).
(2)-(5).
(3)—(5).
(4) (2) (5).
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