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UNIQUENESS IN A MELTING SLAB WITH SPACE- AND TIME-DEPENDENT
HEATING*

BY

BRUNO A. BOLEY
Cornell University

Summary. Conditions for uniqueness of solution are derived for a slab which melts
under an applied heat input dependent both on time and on the melted depth, the melted
material being instantaneously removed. Some examples are constructed in which more
than one solution is exhibited as well as one in which no melting solution exists. A theorem
demonstrating monotonic dependence of solution on boundary data under certain con-
ditions is proved.

Introduction. One of the important problems in the theory of heat conduction
with changes of phase is that of a body, initially solid, which melts under a prescribed
heat input, the liquid portion being instantaneously removed upon formation. This
condition, although not actually realizable in any real physical situation, gives results
which are, for short times, identical with those valid when the liquid remains stationary
[1] or is ablated at an arbitrary rate [2]; they represent, in the latter case, a lower bound
for all times [3], and a good approximation when the Prandtl number of the liquid does
not differ too much from unity [4]—[6]. Solutions to this problem for a halfspace were
obtained by several authors (for references see for example [7]), while uniqueness proofs
were presented in [8] for a halfspace and in [9] for an arbitrary geometrical configuration.

In all the previous solutions heating was applied by means of a prescribed heat input
Q(t) applied at the surface of the solid. A physically more meaningful situation arises
when the heat is applied either by a time-dependent source radiating energy from a point
at some distance from the melting body, or through a heat-conducting layer of liquid;
in such cases the heat input depends on position as well as on time. As a consequence, the
available uniqueness proofs do not hold, and in fact the solution is no longer always
unique, although solutions can still be constructed by the methods in [1] and [10]. It is
the primary purpose of the present work to investigate the uniqueness of solution under
the circumstances just described, for the one-dimensional case, under an arbitrary heat
input Q(x, t).

2. Mathematical formulation. The temperature T(x, t) in the slab s(t) < x < L,
where the melted thickness is s(t) > 0, with

s(t) =0 for t < tm , (1)

satisfies the heat conduction equation

d_
dx k(T) = Pc(T) ~ , a: > s(t) >0, t > 0 (2)dxj v ' dt

under the initial condition

  T(x, 0) = T0(x) < Tm , x > 0 (3)
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and the boundary conditions

T(x, t) = Tm t > t„

-k(T]^ = Q(x, 0 - pljt t> 0

x = s(<). (4)

The symbols tm , T„, , k, p, c and I stand respectively for the time of start of melting, the
melting temperature, the thermal conductivity, the density, the specific heat and the
latent heat of fusion. The cold face x = L will here be taken to be insulated, or

dT(L, t)/dx = 0 t > 0. (5)

An overall heat balance may be written from the above equations in the form [8]:

f Q[s(t), t] dr = f H(T) dx + (pi + Hm)s(t) (6)
*>Q *'«(0

where the heat content H(T), a monotonically increasing function of T, is

II (T) = P (>) dT', Hm = H(Tm). (6a)

3. Uniqueness theorem. It is well known that the solution is unique before melting
starts, and that the same is true after melting, if it is assumed that the melting thickness
s(t) is unique [8]. There remains therefore to investigate the conditions under which the
latter assumption holds, and this will now be done. The term "solution" will here be
taken to indicate a twice continuously differentiable function T(x, t) and a Lipschitz
continuous function s(t), of bounded variation. Existence of such a solution is here as-
sumed.

Assume that two solutions (denoted by subscripts 1 and 2 respectively) exist, such
that, without loss of generality,

Si = s2 0 < t < V V > tmi , t' > tm,

s, < s2 V < t < V + 8, S > 0.

Write Eq. (6) for each of these solutions and subtract the results to obtain (with t' <
t < t' + 5 in all that follows):

J^ {Q[s2(t), t] — Q[Sj(r), t]} dr

= - r //, dx + f (H2 - Ih) dx + (pi + //„)[s2(0 - 8,(01- (8)
J«lU) fi 2 ( ^ )

From the first of (4), T2 = Tm and Ti < Tm on x = s2(t), so that the minimum theorem
for parabolic equations [8], [11] gives T, < T2 for s2(t) < x < L, and thus //, < H2 in this
region. Furthermore

[ Ih dx < Hm[s2(t) - s„(0] (8a)
® i

so that the right-hand side of (9) is positive. For later use note that in fact

R.H.S. > pl(s2 — s,) > 0. (9)
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Consider now conditions under which the left-hand side of (9) cannot be positive;
under these conditions therefore Eq. (9) is self-contradictory, the assumed conditions
(7) cannot be met and the solution is unique. Sufficient conditions for this to be true are:

(a) Q is independent of x, or Q = Q(t), since then the left-hand side is zero.
(b) Q(x, t) is a monotonically decreasing function of x, since then the left-hand side

is negative. This case would arise, for example, if heating were supplied by a source re-
moved from the melting surface, whose effect would decrease with distance from it.

(c) If Q(x, t) is Lipschitz continuous in x, that is

|Q(x2 , t) - Q(xi , 01 < f(t) |x2 - x,\ (10)

provided that f(t) is a nonnegative integrable function, then the solution is again unique.
Indeed in this case

[ {Q[s2(t), t] — Q[s,(t), t] J (It < f /(r) |s2(r) — Si(r)| dr
(11)

< mo - n,
provided that t" is chosen sufficiently close to t', and where the mean-value theorem has
been used with t! < I < t". There certainly exists a time t" sufficiently close to i' that the
last term in inequality (11) is smaller than the term pl[s2(t") — Si(<")], appearing on the
right-hand side of Eq. (8). Hence Eq. (9) is again contradicted, and uniqueness is assured.
Note that here Q may be an increasing function of x.

4. A comparison theorem. It will now be shown that, if two heat inputs Qi(x, t)
and Q2{x, t) are applied to the same body, the solution corresponding to each being
denoted by the subscript 1 and 2 respectively, then

T2(x, t) > T^x, 0; s2(<) < x < L (12a)

s2(t) > s,(i); t > 0 (12b)

provided that

Q2(x, t) > Q,(x, t) (13)

and that either one of conditions (a) or (b) at the end of the preceding section hold for
both Qx and Q2 .

This comparison theorem is a direct extension of Theorem IV of Ref. [8], where the
x-dependence of Q was omitted, and in fact the present proof is quite similar to the one
given there.

The proof is given in two parts: it is first shown (I) that the theorem holds immedi-
ately, when s2 and s, first differ, and then (II) that it cannot fail thereafter. To show part
(I), assume, without loss of generality, that a time t' exists such that

Qiix, t) = Qx{x, t) for 0 < t < t' ^

Q2(x, t) > Qx(x, t) for t' < t < V + 5, S > 0.

Usually, of course, t! = tm . Assume now that a number 5' > 0 exists, for which

s2(0 < Si(t) for t' < t < t' + 5' < t' + 5. (15)
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Write the heat balance equation (6) for each solution, and subtract to obtain

J^ {(MS2M, t] — Qi [s,(r), r] j dr

= ['' [H(T2) - H{T,)] dx + f"(1> II(T2) dx - (pi + Hm)[Sl(t) - s2(t)}. (15a)
1(1) Ji,(D

Since, on x — S](<), T2 < Tm = J\ , it follows from the minimum theorem [11] that the
first integral on the right-hand side is nonpositive. The second integral gives

' '<<> II(T2) dx < Hm[Sl(t) - s2(0], (15b)/:

so that clearly the entire right-hand side of (15a) is nonpositive. The left-hand side of
that equation, however, is positive, in view of (14) and (15), when either condition (a)
or (b) of the previous uniqueness theorem holds; hence (15) cannot be true, and part (I)
of the proof is complete. Note that the proof would have been valid also if condition
(c) of the uniqueness theorem had been enforced; this, however, is not true of the proof
for part (II) which follows.

If Eq. (12b) is to fail at some subsequent time there must be at least one time at
which s2 = S[ ; let the first of these be t". Then

T2>TX 0 < t < t". (16)

The second of interface conditions (4) gives

-k(Tm) d(-T'~ r,) = {Qa[«(/"), t"] - Q1[s(t"), t"]\ - Pl[s2(t") - (17)

where dots indicate time differentiation. Clearly

s2(t") < «iit") (18)

and thus the right-hand side of (17) is positive if at least one of the inequalities in (13)
and (18) hold at t". But (16) requires, together with T2 = I\ = Tm at x = s(t"), t = t",
that the left-hand side of (17) be negative; hence a contradiction arises under the present
assumption that = s2 at t". The special case of

Q2 = Qi , s2 = at x = s(t"), t = t" (19)

must now be considered; however for this case the proof is identical with that of [8],
with the term dQ/dt being replaced by the total derivative along x = s(t), namely

dQ/dt = dQ/dt + s dQ/dx, (20)
and, by noting that if either condition (a) or (b) of the uniqueness theorem holds, then

dQ2[s(t"), t"]/dt > dQMt"), t"]/dt. (20a)
In all cases then, a contradiction occurs if (12b) is assumed to fail, and thus the theorem
is proved. The validity of (12a) then follows immediatelv from the minimum theorem
[8], [11].

5. Examples. The conditions for uniqueness previously derived are of course
merely sufficient, and the examples given below indeed indicate that they are not neces-
sary.
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The solution of the melting problem formulated in Sec. 2 was derived in [10], for
very short times after the start of melting, by means of the "embedding technique". In
this technique the temperature in the region s(t) < x < L is taken as that occurring
within 0 < x < L under suitable heating conditions at x — 0. It is important for the
subsequent discussion to note that, since the temperature in 0 < x < L was expressed
as an integral on the Green's function for that region, negative values of s are neither
physically admissible, nor do they correspond to temperatures with the required degree
of continuity. In discussing uniqueness, therefore, we need only consider positive real
functions s(l).

With the dimensionless notation of [10], namely

y = 1 - t/tm ; £(?/) = s(0/2\/k/„ ; m = VttcTJ21;

On = [d(T/Tm)/dy]x,0.y.n^ ; Q0 = \ZirkTJ2VKtm

where k is the thermal diffusivity, the starting solution is found to be

t(y) = ~qJ^~ dy' + an^3/2' V « 1 (22)

provided that an ^ 0, that the temperature at x = 0 is continuous at t = tm , and that

lim [yu2 AQ(y)] 9* C, a positive constant;
(22a)

&Q(y) = (~M(y), y] - Q[0, o—].
Eq. (22) gives only the highest order-of-magnitude term in the solution; hence if the
two terms on the right-hand side are of different orders, only the larger one must be
retained. It follows that

I = 4many3/2/3ir if A Q < Cy'\ y « 1, (23)

so that in this case the starting solution is identical with that valid for heat inputs in-
dependent of x.

Consider now the class of problems in which the two terms on the right-hand side of
(22) are of the same order, i.e.

m = c2/3/2; ^ = z caV1-3"'"2 = £ anc yW2 (24)
n n

where any combination of values of n may be used in the summation. Note that condition
(a) of the uniqueness theorem is met only if n = 0, condition (b) if all a„'s are nonpositive,
and condition (c) is never met.

Substitution into Eq. (22) gives an equation for c as

fc = £ anc + (25)
n

If only one term is kept and n = 0, the uniqueness theorem predicts that only one real
positive root for c exists, and this is indeed the case. If n = Eq. (25) is quadratic in
a/c, and

3Vc = aW2 =fc Vaf/a + 12ma„/ir. (26)
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Thus only one real positive root is found, in conformity with the uniqueness theorem if
aU2 < 0; the theorem gives no information if a1/J > 0. Similar conclusions are reached
with n = I.

If two terms in the summation are used, with n = \ and n = §, then c1/3 is the solu-
tion of the cubic

f c — a2/3c2/3 — a1/3cI/3 — (2man/ir) = 0, (27)

which has, from Descai'tes' rule of signs, at most one positive real root if a2/i and a1/3 are
of like sign and a1/3 > 0, but will have three positive real roots for suitably chosen
a2/3 > 0 and ain < 0.

More interesting results are obtained with n = 2, in which case AQ/Q0 =
and

3
C = A4a,

j1 __ 32ma2an
(28)\ 9ir

Three cases may be distinguished (cf. Fig. 1):

(1) «2 < 0: One positive real root, in agreement with condition (b) of the uniqueness
theorem;

(2) 0 < a2 < 97r/(32man): Two positive real roots; the solution is not unique; no
contradiction with the uniqueness theorem.

(3) a2 > an/(?>2man): Two complex roots; no real solution to the problem under
the conditions stated. On the other hand, if condition (22a) is not excluded,
then the solution is [10] £ yl/2; but

My) = Cy-u* = agy-^ or ( a y (29)
Vo

c

Fig. 1. Real positive roots of Eq. (19).
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so that again no solution is possible. This is a phenomenon not heretofore observed,
namely that, with certain types of space- and time-dependent heat inputs applied at a
sufficiently high rate, melting will not occur at all. Solutions will of course exist if the
solid becomes superheated, and perhaps if the physically unrealistic requirement of
instantaneous liquid removal is replaced by ablation at a finite rate; certainly, in fact,
no difficulty arises if the liquid remains stationary, in which case the z-dependence
of the applied heat input is irrelevant since the heated surface does not move. A full
examination of these questions would however require a study of the existence of solution
in a different physical problem than the one presently being considered.
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