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ON NONLINEAR STABILITY THEORY*

By A. J. PRITCHARD (University of Warwick, Coventry, England)

Introduction. As a first approach to the stability analysis of an equilibrium state
of a dynamical system the perturbations are assumed to be infinitesimal, and the equa-
tions of the perturbed motion are linearized. If the system is autonomous, solutions which
are exponential functions of time are sought and stability concluded if the perturbations
decay to zero in time. On the other hand, if the perturbations grow in time the nonlinear
terms must be considered and there exists the possibility that the perturbations are
bounded for all time. The original equilibrium state is then distorted and may be replaced
by some new state. This concept was first suggested by Landau [1] and an example is
the Couette flow between two concentric, circular cylinders. If the outer cylinder is
fixed and the speed of the inner cylinder is high enough the laminar Couette flow is re-
placed by a new circumferential flow with superimposed toroidal (or Taylor) vortices
spaced periodically along the axis. Davey, Di Prima, and Stuart [2] have examined this
problem by assuming a Fourier series representation of the disturbance, the coefficients
of which are expanded in suitable powers and products of the "amplitudes" as functions
of time. A similar approach for nonlinear stability problems has been suggested by
Eckhaus [3] who assumes that the solution of the nonlinear problem may be expanded
in a series of eigenfunctions of the linearized problem. The coefficients of the series are
"amplitude" functions of time and are to be determined.

An alternative approach to stability problems is the direct method of Liapunov. The
method has been applied successfully to stability problems involving linear and nonlinear
ordinary differential equations. The stability and instability theorems have been ex-
tended to continuous systems by Movchan [4], [5] and Knops and Wilkes [6]. For con-
tinuous systems it is necessary to introduce a measure of the initial disturbance (metric
pa), and a measure (metric p) of the distance of the perturbed state from the equilib-
rium state. The stability of the system is then studied with respect to these metrics.
Liapunov functionals are constructed, and the condition that the chosen, positive,
bounded functional should be nonincreasing leads to criteria for stability.

In this paper a theorem is proved which extends the Liapunov stability theorem to
obtain bounds for the solution of the nonlinear perturbed equations. It is then possible
to consider the effects of the nonlinear terms and obtain estimates for the amplitude func-
tions in problems which are unstable in the linear approximation. The approach enables
the perturbed equations to be dealt with directly, and no assumptions have to be made
about the relative orders of magnitude of the amplitude functions.

In Sec. 1 the Liapunov stability theorem and its extension are given, and in Sec. 2
these theorems are applied to some problems in hydrodynamics.

1. Basic Theorems. A specific system is considered and it is assumed that the
variables Z\ , z2 , • • • represent measurable values of the physical quantities at time t.
If we associate with the set (zt, z2, • • • , t) a metric p the motion of the dynamical system
may be represented as a path in a metric space. One such path will be taken as the un-
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perturbed path and the metric p may then be taken as a suitable measure of the "dis-
tance" of a point in the perturbed path from a point in the unperturbed path. A further
metric p0 is also introduced which will serve as a generalized measure of the initial dis-
turbance.

Theorem 1: Liapunov Stability Theorem. The unperturbed path will be uni-
formly, asymptotically stable with respect to the metrics p and p0 if

(i) p(Zi , ■ ■ ■ , t) is a continuous junction of t,
(ii) p(zl , ■ ■ ■ , t) is continuous with respect to p0(2i , • • • , t), that is, given t > 0 there

exists S such that p(zi , • • • , t) < e whenever p0(z1 , ■ ■ ■ , t) < 8,
(iii) on the subspace consisting of the points which satisfy p < R where R is a real

positive number there exists a functional F(zx , • • • , t) ivith the folloiving properties:
(a) there exists a nondecreasing function y(p) such that

dV/dt < -7(p) <0,
(b) there exist nondecreasing functions a(p), B(p) such that

/3(p) > V& ,■••,«)> «(p) > o,
(c) the functional V(zi , ■ ■ ■ , t) is continuous with respect to the metric p0 on the

set of initial instances T0 .
If p = Po we say the unperturbed path is asymptotically stable with respect to a single

metric p.

Theorem II. Consider a functional V(z, , z2 ■ ■ ■ , t) and a metric p{z^ , ■ • • , t) such
that:

(i) V and p are continuously differentiable in t,
(ii) ap" < V, a > 0,

(iii) dV/dt < H (V) where H (V) is a polynomial in V, the real positive roots of H (V) — 0
being assumed to be ordered by magnitude.

Then if H(yo) > 0 ive have p2 < Vv/afor all time and if H(V0) < Owe have p" < V0/a
for all time and as t —> co, p2 —> VL/a or p < VL/a, where VL , Vv are consecutive, real,
positive roots of H(F) = 0 such that V,, <V0<Vv and V0 = V(z1 , • • • , t0) is the initial
value of V. If VL , Vv do not exist we take VL = 0 and Vv = + •

Proof. Consider H(V0)_ < 0 and assume Vv > V > V0 at some time then by the
continuity of V there exists t < i such that Vv> V > T^0 for all t £ (~t, I) and V(t) = V0 .

Therefore by the mean value theorem there exists t2 (E (t, I) and

dV
dt

VQ) - VQ) > 0
I - I

But (dV/dt) < H(V) < 0 for Vv > V > V0 > VL . We have a contradiction, so
V < V0 and p2 < V0la.

For VL < V < F„

dV/dt < K0(V — V,) where K0 is negative.

Integrating we have

F - VL < AeK°l

and as t —> «>, F -+VL or F < F,_ , so p2 —> VL/a or p2 < VL/a.
Similar arguments may be invoked to prove the remainder of the theorem.
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Note, (i) If Vv = + 00 and H(V0) > 0 the system is unstable.
(ii) If Vr, = 0 and II (F0) < 0 the system is asymptotically stable.

(iii) We may relate the bounds on p2 to a measure of the initial disturbance p0 if
we further assume Va < 18p20.

2. In this section we apply the theorems to two stability problems associated with
Burgers' models of turbulence [7]. Buis and Vogt [8] have used Theorem 1 to obtain
sufficient conditions for asymptotic stability, and Eckhaus [3] has used asymptotic
expansions with respect to suitably defined small parameters to obtain estimates for
the amplitude functions. In Example III the theorems are applied to a system of ordinary
differential equations governing the amplitude functions related to the transition from
Couette flow to Taylor-vortex flow.

Example I. Burgers [7] has examined mathematical models which are similar to and
simpler than the usual equations of hydrodynamics. He discusses these models, which
in a sense form a mathematical model of turbulence, and indicates the bearing of his
results on the hydrodynamical problem.

One such model is:

du 1 du . „ [' 2 , d(u)
77 = d 72 + ~ ™ u dx I—dt R dx J0 dx

where w(0) = u(l) = 0 and is the analogue of flow in a channel. The variable u represents
the velocity of the disturbed flow and there is turbulence in the system when u is different
from zero. R is the Reynolds number.

Linear Problem.

dtl 1 d U - r\
di=Rd7 + U' «(0) = »(D = 0.

Let

pi = p2 = 2V = I u dx;

then

f
dV
dt - - [ d (I) -K

Using the Rayleigh inequality

I (S) u'd'
we have

W17 /~2 \ 2
u ax.dV

dt s-g-')/;
It is easily shown that for R < ir2 the conditions of Theorem 1 are satisfied, and so the
system is asymptotically stable with respect to the metric p.

Nonlinear Problem. Let

Po = p2 = V = / u dx;
Jo
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then
dV
dt

and so

= 2/„ [m2 -1 (I) ]dx - m2 dx

dV~ <2 RV
dt ~ I \\-J/R) - V_R

Again for R < ir2 we have asymptotic stability.

If R > ir2, recalling Theorem 2, for 0 < V0 < (1/72) (l — x2/72) or p2 < (1 /R)-
(1 — ir2/R) we have p2 < 1/72(1 — 7r2/T2) for all time.

For po > (1/72) (1 — tt2/R) we have p2 < p2 and p2 —> (1/72) (1 — r2/R) as t —> °°
or p2 < (1/72) (1 - t2/R).

(A)

The above results give bounds for the turbulence in the system, and it is instructive
to compare the level with that obtained by Eckhaus [3]. By taking u = X) o An sin
and using suitably defined small parameters Eckhaus obtains, for R = 2tt2, the following
estimates for the amplitude functions:

A0 — ±.55/tt, At = .16/7r, A 2 = T.075/7T, A3 = ,031/t,

and so ^ A\ ~ 1/37T2. For R = 2ir~ and u = A„ sin mrx we have p2 = } ^ .42 and
the results (A) give

~* 2? 38 or H Al <

Example II. Consider

dn 1 32m 2 3 . . . 2 du d2 f' 2 ,

tt(0) = w(l) = 0.

Linear Problem. Let

= pi = V = R f u2eVR" dx;
Jo

then

f - -2 (' +vs)*' <*■
Using the inequality

f0 fx 2 dx>TT2 f* eV«*V dx,
we have

dV
dt ^ - 2(s - {xu'°vi"<*■
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It is easily shown that for R < it4 the conditions of Theorem 1 are satisfied and the
system is asymptotically stable with respect to the metric p.

Nonlinear Problem,. Let
2 2 TT

p = p0 = V

then

J" u2 dx;

dv
dt I [4 (!) + (vs+*')"']dx ~ 2fi'iidx-

Making use of the Rayleigh inequality, and the inequality

I (I) ^(5M2)2I0 xVdx'
which can easily be established by variational methods, we have

- —- < —yV — R'2 V2 where y = ir2(- — ——) K--2 dt ~ 7 ' 7 \R 30.94/ y/R
From which, using Theorem 1, we have asymptotic stability with respect to the metric
P for R < 17.7.

For R > 17.7 we have, by Theorem II if p„ < —y/R2 then p2 < —y/R2 for all time;!
if Po ^ —y/R~ then p2 < p„ and as t —* oo, p —> —y/R2 or p2 < —y/R2 J (B)

The functional V used here is different from that used in the linearized problem.
Buis and Vogt [8] have shown, using

2
Po p2 = y = R f eVR*°u dx,

J 0

that the nonlinear problem is asymptotically stable for R < ir4 and disturbances bounded
by max |w| < %[1/R(k2/y/R — 1)]. Eckhaus [3] has considered the problem by assuming
u = Aniin, where u„ are the eigenfunctions of the linearized problem

u„ = e~l/2^Rx' gin (n -f- X)trx.

In many problems it will not be possible to use Theorem 2 directly. However we may
use the theorem after first obtaining the equations satisfied by the amplitude functions.
This approach will be illustrated in the next example.

Example III. Davey, Di Prima, and Stuart [2] have shown that the amplitude
equations to the third order which provide a model for the transition (with increasing
Taylor number, T) from Couette flow to Taylor-vortex flow, are

= eX - X3 - IF2 - 6X \Z\2 - 2X |F|2 - 2Y(ZV + ZV)
CLi

J = eY - Y3 - YX2 - 6F |F|2 - 2F |^j2 - 2X(ZV + ZV)
dl

™ - ZZ |Z|2 - 2Z |F|2 - 3ZX2 - yZF2 - (3 - y)VXY - ZF2
CLl

^ = aV - 3F |F|2 - 2F \Z\2 - 3FF2 - 7FX2 - (3 - y)ZXY - VZ2CLl
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where~ denotes complex conjugate, 7 is a complex number whose real part yr is in the
range 0 < yr < 3. The functions X, Y are real and Z and F are complex. The parameter
t is real, but a is complex, and e > at .

The laminar Couette flow corresponds to X = Y = Z = V = 0 and e Js 0 for T ^ Tc
where Tc is the critical Taylor number. Stuart [9] has constructed a Liapunov functional
L for the system. He considers

pi = P2 = L = X2 + Y2 + \Z\2 + |F|2

and so

g = eL - L2 - - ar){\Z\2 + |F|2) - yr(X2 |F|2 + Y* \Z\*) ~ 2(|Z|4 + |F|4)

Therefore

(ZV + ZV)2 - 7(X2 \Z\2 + Y2 |F|2) + (7 - yr)XY(ZV + ZV).

clL/dt < eL - L2.

By Theorem 1 we have for e < 0(i.e. T < T,.) the laminar Couette flow is asymptot-
ically stable. For T > Te , i.e. e > 0, we may use Theorem 2; then for 0 < p„ < e we
have p2 < e for all time; for p„ > e we have p2 < p„ and p2 —> e as t —» co or pJ < e.

We have therefore obtained estimates for the bounds of the amplitude functions.
These estimates have been obtained by assuming that the amplitude equations may be
truncated at the third order. Stuart [9] makes use of these estimates in justifying this
truncation.

Conclusions. It has been shown that Theorem 2 may be useful in estimating
bounds for the solution of nonlinear problems, when the linearized problem is unstable.
Much depends on the ability to construct a functional F satisfying certain conditions.
In many problems it will not be possible to construct a functional by dealing directly
with the equations of motion. However, by assuming the solution may be expanded in a
Fourier series, or a series of eigenfunctions of the linearized problem, it is possible to
obtain the amplitude equations and to construct a functional from these equations.
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