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ERROR ESTIMATES FOR SOME VARIATIONAL METHODS APPLICABLE TO
SCATTERING AND RADIATION PROBLEMS*

BY

M. SZALEK
Institute for Fundamental Problems of Technology, Polish Academy of Sciences, Warsaw, Poland

Abstract. We consider variational expressions helpful in calculating the approximate
value of a scalar product, in Hilbert space, of an arbitrary vector g with a solution u
of an arbitrary inhomogeneous linear equation. Error bounds for this approximate value
are given. For the case where an approximate solution of an inhomogeneous equation is
sought in an arbitrary subspace of a space containing u, conditions are specified for a
best estimate of the error by the use of two trial vectors. A method is presented for an
additional improvement of the error estimate by using four trial vectors.

1. Introduction. In the problems of scattering or radiation we are usually interested
in finding out the values of only a few functionals, depending on the solutions of the
equations pertinent to the problem. For example, in the problem of scattering on a wave-
guide junction the quantities of interest are, in most cases, only the amplitudes of the
propagating modes, but not the amplitudes of the evanescent modes. When calculating
the approximate values of such functionals it may be useful to apply variational methods.

To state the problem, consider an equation

k = Du", (1)

where and H2 are Hilbert spaces, and M is the set of linear
operators (Ht —» H2). For g £ Hj , we want to find the value of the scalar product

(u , g)■ (2)

That product is assumed to satisfy the conditions for a scalar product in H spaces.
An approximate value of (2) can be found by using some functionals, such that their

stationary values are equal to (u , g). Let IT denote the adjoint of D, so that for any
» G H), u £ H, the equality (Du, w) = (u, D+w) holds. In general, when D ^ D+, as
happens for a waveguide junction in the presence of anisotropic media, or where k ^
const • g, as is the case if the waveguides at the junction are of different cross-section,
the above functionals depend on two trial vectors, u and w. We shall consider two simplest
functionals of that kind:

R^w, w] = (u, g) + (k, w) — (u, D+w), (3)

Functional (3) appears in [1], [2], [3] and [4], Functional (4) was used in [5] and is also
equivalent to an expression discussed in [6] in connection with eigenvalue problems. For
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D — D* and g = k it reduces to the homogeneous Schwinger's expression

(u, k){k, u) ...
(u, Du) ' (0)

introduced, e.g., in [7] and [8],

In this paper the error bounds for the expressions (3) and (4) are determined (Theo-
rems 2.1 and 2.2). The error estimate for (3) turns out to be better than for (4). These
estimates are meaningless when the parameter m0 , as defined in (6), equals zero, and
they may be of little advantage if m„ differs only slightly from zero. It is shown in Sec. 4,
however, that in such cases one can often obtain a sufficiently large m0 by transforming
Eq. (1).

For the case where an approximate solution is sought in an arbitrary subspace
H, C H, , conditions are specified to guarantee a best error estimate (Theorem 2.3).
Theorem 3.1 allows for an additional improvement by introducing four trial vectors.

2. Error bounds. For any g, u £ Hi , k, w £ 1I2 , let

|m| = [(u, u)]W2} \w\ = [(w, w)]1/2,

R2[u] = (k — Du, k — Du) = |fc — Du\2,

R3M = (g ~ Duw, g — D*w) = |g — D+w\2,

mj = inf \Du\, m2 = inf \D+w\, m0 = max (m, , m2),
lu| - 1 |1»| - 1

where (z, x), for z, x £ Hi or z, x £ H2 , is the scalar product in Hx or H2 respectively.
We notice that if for every z £ H2 there exists one and only one x £ such
that z = Dx, then nij = m2, because for n^ > 0 or m2 > 0 they are the inverses of the
norms of the adjoint operators D'1 and [Z)_1]+ = [Z)+]~'.

The following theorems can be stated:

Theorem 2.1. Let D £ M, g, u £ Hi , k, w £ H2 , 0 < m < m0 . // there exists
u° £ H! satisfying Eq. (1), and w° £ H2 satisfying the equation

g = D+w°, (7)

then

|Rj[m, w] — (u°, g)| < m-1 |R2[m]R3[w]|1/2 = A[m, w] (8)

where A[u, w] = B \u — u°\ \w — w°|, and B > 0 depends only on the directions of the
vectors u — u° and w — w°.

Proof. Substituting u = u + x, w = w° + z into Rj , R2 , R3 and taking into
account (1) and (7), we obtain

R,[m, w] = (u, g) — (x, D+z), (9)

R2[m] = |/-).t[\ (10)

R3M = |£»+2|2. (11)

From (6)

1^1 < m;1 \Dx\, \z\ < \D+z\.
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Consequently, by Schwarz' inequality, and from Eqs. (10) and (11), we have

\(x, D+z)| = \(Dx, z)| < m'1 \Dx\ \D+z\ = m-1 {R2[m]R3[u)]} 1/2.

This relation, along with (9), proves (8).
Remark. Since we know Dx = Du — k and D+z = D*w — g, we can sometimes

improve the estimate of |a:| or \z\ as compared to that obtained in the proof of Theorem
2.1. We can replace there mt and m2 by m[ and m2 , respectively, where m[ > m, or
m2 > m2 • It can then easily be seen that m in (8) can be replaced by m^ = max (mi ,
m( , m2 , m2), which may improve the estimate.

In connection with Theorem 2.1 it might be pointed out for comparison that a typical
value of a linear estimate of the error in the scalar product (2), as obtained by estimating
the error in the approximate solution of the linear equation (1), is m~J{R2[w]}1/2 |g|.
One can readily see the clear advantage of estimate (8), which is of second order with
respect to the errors in u and w.

Theorem 2.2. If m,m2 > 0, (u, D+w) ^ 0 then Theorem 2.1 remains true when
inequality (8) is replaced by

|Ri'[u, w] — (u°, gi)| < \{u, D+w>)|-1 [(m^i)"1 |fc| |g| + m_1 |(w°, ?)|] |R2[m]R3[w]|1/2,

(12)
where R{[u, w] is given by (4).

This can be proved in analogy to Theorem 2.1, taking into account that

(u, g)(k, w) _ , o \ , (k, z)(x, g) - {u\ g)(x, D+z)
<«, D+w) K (u, D+w)

Using the relation (k, z)(x, g) — {u", D+z)(Dx, w°), we can also write

|Ri[w, w] - (u°, g)\ < |<«, D+w)|- [|w°| |w°| + nT1 \{u°, g)\] |R2[w]R3M|'/2. (13)

Having in mind that (u, g) = (u, D+w) for u, w approximating closely enough u and
w°, we see that estimates (12) and (13) are worse than (8).

Consider now an operator projecting every u G H, onto a subspace H3 C H, :
P\U G H3 ; PiPi = Pi ; P j = Pi . In the case where D is a N X N matrix, Pt can be
defined, e.g., as

P = (Pir) = (5ir) r < n0

= (0) n0 < r < N,

where 5ir is the Kronecker delta. Hence an equation PJi = PJJP^u, for example, is an
approximating set of n0 algebraic equations obtained from the set of N equations by
rejecting N — n0 equations and setting N — n0 unknowns equal to zero.

Similarly, let P2 be such that for w £ H2, H4 C H2 the relations P2w £ H4; P2P2 =
P2 ; P2 = P2 hold. We can then formulate

Theorem 2.3. Let D G M, j £ H] , J: £ H2 , u' G Ht , w' G H, . // /or a certain
u'° G H3

P,D+k = PlD+DPIu'°, (14)

then R2[m'] reaches its least value for u' = u'°.
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Similarly, if for a certain w'° £ H4

P2Dg = P2DD+P2w'°, (15)

then i?3[w'] reaches its least value for w' = w'°.

Proof. Substituting u' = u'° + x'(x' £ H3) into R2[u'] we get R2[u'] = | k — Du'° |2 +
\Dx'\2, which proves the first part of Theorem 2.3. The second part can be proved by
substituting D+, g, w, P2, z for I), k, u, Pi , x, respectively.

Eqs. (14) and (15) are, of course, identical with the equations of the method of least
squares, as applied to Eqs. (1) and (7), (see e.g. [9], [10]).

From Theorem 2.3 it follows that estimate (8) is best for u £ H3, w £ H4 if u — u'°,
/Ow = w .

3. Additional estimates. There exists a way of improving estimate (8) if in place
of the two trial vectors u and w we consider four vectors. This results from the following
theorem in which the spaces Hi and H2 are for simplicity assumed real; this is not an
essential restriction since with complex IT and H2 the problem can always be reduced
to that with real II, and H2 .

Theokem 3.1. Let IT , H2 be real, D £ M; g, u £ H, ; k, w° £ H2 ; u'°, x' £ H3 ;
z', w'° £ II4 . If u'° and w'° satisfy (14) and (15), respectively, then

max (a, — a2) < (u°, g) < min (aj + a2), (16)
X ' , 2 ' X ' , Z '

where

at = Raw'0, to'0] + (x\ g - D+w'°) + (k - Du'\z') - (x\ D+z'),

a2 = m"1 {R2[m'°] + <*', D'Dx')y/2{R,[Wn] + (z', DD+z')}U2.

Proof. Let u = u'° + x', iv = w'° + z'. Taking into account relations (14) and (15)
we get ai = Ri[w, w], a2 = m~l |R2[m]R3[w]|i/2. Hence, inequality (8) can be written
in the form

a( — a2 < (u, g) < ax + a2 . (16')

This is valid for every x' £ H3 , z' £ H4 , which proves (16).
For x' = z' = 0 inequality (16') goes into (8) with u = u'°, w = w'°. Inequality (16)

gives, therefore, an estimate not worse than (8) with u £ H3 , w £ H4 .
The exact values of max (ai — a2) and min (ax + a2) apparently are not worth

searching for in view of mathematical difficulties. The method of steepest descent can be
applied here. This corresponds to setting z' = d,P2Vi ; x' = d2P,?y2 , where d! , d2 are
real numbers, y1 = k — Du'°, y2 = g — D+w'°. One can also put z' = d\y[ , x' — d'2y'2 ,
where y[ £ H4 and y'2 £ H:! are the eigenvectors belonging to the lowest eigenvalues of
the operators P2DD+P2 and P1D+Z)P1 , respectively. Such a choice will guarantee the
slowest increase of a2 with the increase of \d[\ and \d2\. Combining both the substitutions
we can put z' = dxP*yx + d[P2y[ ; x' = d2Piy2 + d^P^ .

Applying the method of steepest descent we obtain from (16) the inequality

max (ai — a2) < (u°, g) < min (aj + a2), (17)
dt .(1 a dt .da

where
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a, = Ri[u'°, w'n] + d, \P2Vl\2 + d2 \P,y2\2 - dId2{!/2 , P^P.y,),

a2 = m-MI^!2 + d2 \DPiy2\r/2{\y2|2 + d2 \D*P2y^Y'\

because R2[w'°] = \yi\2, R3[w'°] = |2/2|2. Knowing Di = P1D+DPI and D2 = P2DD+P2 ,
needed in (14) and (15), we can express here [DP^I2 = (y2 , PiDiP,y2)', \D+P2yi\2 =
(Vi j P2D2P%y 1 )•

The functions a, and a2 depend on two variables, di and d2 . For such functions it is
relatively easy to calculate their approximate extreme values. Apart from that, to deter-
mine the coefficients defining a! and a2 it is sufficient to calculate some products of "small"
(n0-dimensional) vectors with matrices, since all time-consuming calculations have been
already performed in connection with Eqs. (14), (15) and (8). It therefore seems reason-
able to use estimate (17), even if there is only a relatively small chance that this might
essentially improve the error estimate.

So far, this author knows of only one case where estimate (17) has been applied;
this was in numerical calculations concerning scattering on a waveguide junction in the
presence of an anisotropic medium. In that case no noticeable improvement in the error
estimate was obtained despite the fact that the necessary conditions, as given below, for
estimate (17) to be useful were satisfied.

In order to find the above-mentioned conditions consider a quantity a3 defined as the
ratio of the shift in the upper bound of the error to the distance between the bounds

a3 = ^ + a2) |dl_d,_0 — min (a, + a2)][2a2 |dl=d,-o]_1

(18)

= \ max [—dx |P22/i|2 — d2 iPj^ + djd^ ,PlD+P2y1) + m'1 {y^ \y2\ — a2] . ™ ,•
til , da 12/1 | I2/2I

This quantity can serve as a measure of the achieved improvement in the error estimate.
The inequality 0 < a3 < 1 must be satisfied. The larger a3, the greater the improvement
in the estimate. We always have \yi\2 > \P2yi\2, \y2\2 > \Piyi\2, \DPiy2\ > mi \Piy*\,
\D+P2yx\ > m2 |P22/i|.

Taking for example \y,\ = \y2\, b \yt\ = \P2yy\ = \Piyt\, m0 = m, \DP1y2\ = |D+P2t/1|
= nm \yi\, (y2 , P1Z>+P2?/1) = 0, dj = d2 , n > b, 0 < b < 1, we obtain

a3 = ~ max [ — 2d J)2 — djn2m].
^ di

The maximum is reached for dt = — b2/n2m; then a3 — b4/2n2. Hence the outlined
method based on Theorem 3.1 can be sensibly applied only when n can be small, e.g.
b < n < 2, and, simultaneously, 6 = 1. This can be the case only when m['/m0 < 2, 5
and m2'/m0 < 2, 5, where

m(' = inf \DP{u\ m2' = inf \D*P2w\
IP,ul-l | 1 -1

with u £ H! , w G H2 . These conditions remain also valid in a more general case, in
particular, in every case where (t/2 , PJ)*P2]h) — 0.

4. Remarks concerning m0 and A [u, vj]. In connection with the estimates given it
is useful to examine how transformations of Eq. (1), with m0 = 0 or m0 approaching
zero, may influence the values of m0 and A[w, w] in (8).

Suppose that Eq. (1) is equivalent to an infinite set of algebraic equations. Usually
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this set can be approximated, with an accuracy sufficient for the physical problem under
consideration, by a finite set of N algebraic equations with m0 ^ 0. This procedure is
analogous to that where Eq. (1) is transformed by multiplying it by such a linear operator
L that for the operator LD the value of m0 is positive. To obtain a suitably large m0 we
can also apply these two procedures successively. Let A,[tt] = moMRsM}1'2. Putting
for simplicity m = m0 , we have A[u, w] = AJw]{R3[w]}1/2. In Theorem 4.1 we shall
specify the operators L for which A,[w] reaches a minimum.

Suppose that D can be written in a matrix representation as a finite N X N matrix
(Dir), with m0 ^ 0. Let H, = H2 , det (Z)) 5^ 0, det (L) 0. We have in place of Eq.
(1) an equation Lk = LDu. Thus R2[L, u] = \L(k — Du)\2, m0(L) = min|U|_, \LDu\,
A,[L, u] — {m0(L)}_1{R2[Z/, u]J1/2. Let the components of an arbitrary vector x £ H,
be Xi(i = 1, 2, • • ■ , N), and (x, t) = x^t; for any 1, I G H, where x* denotes the
complex conjugate of x; . We can always adopt such a definition of a scalar product,
defining accordingly the vector g. Let u, u, x £ EL ; u = u° + x.

Theorem 4.1. If det (D) 0, det (L) 5^ 0, Hj = H2 , then for every u £ EL the
quantity Ai[L, u] assumes a smallest value for LD = cS where c is any number different
from zero and S is any unitary matrix.

Proof.

Au] = [moW]-1!^, [LD]+LDx)]l/\

Since L, = [LD]*LD is a Hermitian positive definite matrix we can pass by means of a
unitary transformation ^ to a coordinate system where L, is diagonal and can be written
L{ = (a2 §-,T), where a, > 0. In this new coordinate system the definition of the scalar
product remains unchanged and m0(L) = mini ai . Hence

A1[L,M] = {|:|xi|2a?} -i
mm as

i

ThusA,[L, u] assumes a smallest value for a, = const (i = 1,2, ■■■ , N). This is so if LD =
cS, e.g. if L =' D~\

By making N tend to infinity, Theorem 4.1 can be generalized to the case of infinite
matrices, even with det (D) = 0, provided that to every z £ II2 there corresponds only
one x £ H, such that 2 = Dx.

. Regarding R3[?i>] the following facts can be noted. In place of Eq. (7) we have g =
D+L+w°(L). Hence R;i[L, w(L)] = \g — D+L+w(L) |2. We can expect that the closer LD
approaches c<§, the smaller R?[L, w(L)], because it is then easier to find a good approxima-
tion to the solution of the equation LDg = LD[LD]+w° = \c\2iv°.

We can, therefore, in general say that the closer LD approaches c<S, that is the less
the norm of LD differs froni m0(X), the smaller A[u, m]. We can also notice that, in
accordance with the inequalities given at the end of Sec. 3, most favorable conditions
for applying formulas (16) and (17) exist when LD = cS, as in that case the norm of LD
differs little from m„(L).

If D does not differ much from a diagonal matrix we can, in particular, set L =
(Ci <Slr) with suitably chosen numbers C| . Assuming L in that form may also turn out
useful in other cases.

In connection with our estimates the question arises of determining the number m0 .
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This question will not be discussed here. It may, however, be noticed that even the
knowledge of a very rough approximation of m0 will be useful. In addition, if we want
to find the values of m0 for many operators D or LD not much different one from another,
it is sufficient to find them for some of these operators and apply to the rest the estimates
connecting the numbers m0 of two operators and the norm of their difference (cf. e.g.
[11]). If the operator LD is given in a matrix form and that matrix is not much different
from diagonal, we can also apply other estimates such as the Hadamard estimate [11].
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