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-NOTES-

ON INCIDENCE MATRICES*

By PETER C. C. WANG** (University of Iowa)

Given an m X n incidence matrix A(m, n), it is desired to "squeeze" as many of
its l's as possible into its upper left-hand corner by a sequence of row and column
permutations. Such problems arise in designing switches for computers. To establish
criteria for the optimal matrix of the entire class of optimal row and column permutations,
we assign a weight to,-,- to each position in the original matrix, where ty,-,- is the weight
assigned to the ith row, ;th column position. The weight of a matrix A(m, n) — (a,-,) is
taken to be

X! lawn.

We take «),-,■ to be strictly increasing in both i and j so that a 1 in the (i, j)th position
is preferred to a 1 in the (i, j + l)th, and so on. The problem, then, reduces to finding
the matrix, derived from the original by arbitrary row permutations and column
permutations, such that its weight is minimal among all such (finitely many) permu-
tation-derived matrices. For basic terms used in this note, we refer to Ryser [1],

We first consider the case in which wti = f(i) + g(j), where / and g are strictly
increasing in both i and j, respectively. Under these conditions, we have the following
characterization.

Proposition 1. A necessary and sufficient condition that an incidence matrix A (in, n)
be optimal (i.e., minimal-weight) is that it be monotone. That is, if R = (rt ,••• , rm) and
S = (Si , • • • , s„) are the row sum and column sum vectors, then > r2 > ■ • • > rm
and Sj > s2 > • • • > s„ .

Proof. Note that if A is the matrix and W(A) is its weight, then
m n

W(A) = £ £ aijWii
i = 1 j = 1

m n

= X) X) fliitf© + g(j)}
t=l 7-1

= X) /(*>< + X) f0>.-
t = 1 J=1

where we note that X2"-i au = number of l's in column j — s,• and, similarly, that
X/i-i au ~ r< • In a matrix A, with p > q and rq < rv , consider the matrix A' derived
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from A by permuting rows p and q. Now a row permutation clearly does not affect the
number of l's on a given column so that, if R' = (r[ , • • • , r£) and S' = (s[ , ■ • ■ s'J
are the associated row and column vectors of A', then S' = S and r, = rj , i 7^ p, q;
rv = r'Q , and rQ = r'v . But

p > q implies J(p) > j(q)
and

rv > ra implies rvf(p) + rj(q) > rj(q) + rj(p).

This follows from the fact that

(r» ~ rQ)(j(p) - /(g)) > 0 implies r„f(p) + rj(q) - (rj(q) + rj{p)) > 0.

However, we then have, since rv = r'Q , rQ = r'v , that

rj(p) + rj(q) > r'J{p) + r'J(q).
Since all other row and column sums are unaltered, we have

W(A) = ZrM + Zs,g(j)
* J

> Z r!f(t) + E4(i) = W(A').» i
Hence A is not an optimal matrix. To prove sufficiency, we need only note that W(A)
depends on A only through its row and column sum vectors since the number of l's
in the given lines is unaltered by any sequence of permutations. Thus we see that the
row and column sum vectors of the monotone matrices derivable from the given matrix
are identical. Hence the weights for all monotone matrices are the same. From the
necessity of monotonicity the conclusion follows.

This solves the question of optimality for the special weighting /(z) + g(j). It seems
reasonable next to consider weights wu = j(i)g(j) where / and g were as above. The
question is not so simple, as the following examples show.

In the case of a sum weighting there existed a sequence of permutations which
decreased the weights of the intermediate matrices monotonically.1 This is not the case
for a product weighting.

Example 1. Consider the weight wa = ij and the matrix

0 0 0 1 fA =

Then
1110 0

W(A) = 2 + 4 + 6+ 4 + 5 = 21.

It is clear that one column permutation or one row permutation each increases the
weight in the resultant matrix. However,

A* = 0 0 111

.1 1 0 0 0.
is derivable from A and W (A*) = 2 + 4 + 3+ 4 + 5 = 18 <21.

1 Just permute pairs of rows (columns) which are not monotone in the row (column) sum vector.
This follows the proof of necessity.
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At this point we should include a procedure for minimization by permutations of
rows (columns) only against a given order of columns (rows): Compute the value of
each row were it in the first position in the new matrix. Permute the rows so that the
row with the greatest initial weight is first, and proceed in order, decreasing the rows in
order of diminishing initial weight. Note that if the initial values of rows 1, • • • , m
were 7i , /s , • • • , Im , then the contribution of the fth row in the Zcth position of the
new matrix is

1(k) t 1M //iwz-N
/(I) /(I) h

= o).
i-1

But /(fc)//( 1) is increasing in k. The same argument is used in showing the necessity
of mono tonicity in the / + g weighting with /, taking the role of r, .

Example 2. Monotonicity is unnecessary in either row or column in the 3 X n
case, as is shown by the following matrix A, with wa = ij,

~1 1 1 1 1 0 0 0 o"
4= 0 0 0 0 0 1 1 1 1

_1 1111000 0.

Here A is minimal for this particular sequence of rows and

W(A) = 4 + 8 + 12 + 16 + 20 + 12 + 14 + 16 + 18 = 120.

On the other hand,

~1 1 1 1 1 0 0 0 o"

A* = 1 1 1 1 1 0 0 0 0

_0 0 0 0 0 1 1 1 1_

which is minimal against a monotone row and yields

W(A*) = 3 + 6 + 9 + 12 + 15 + 18 + 21 + 24 + 27 = 135.

In the square matrix A(4, 4) the necessity of monotonicity is also contradicted
in the case wi:- = ij

"l 1 0 0

110 0

0 0 0 1

0 0 10

A =

Here

W(A) = 3 + 6 + 12 + 12 = 33.
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This is contrasted with

A* =

0 0 0 1

110 0

1 1 0 0 I

[0 0 1 Oj

where

W(A*) = 4 + 6 + 9 + 12 = 31

and it can be shown to be minimal.
Since monotonicity seems to be a "nice" necessary condition (i.e., we have an easy

characterization) we now develop a characterization of the functions /, g for which fg is
such a weighting.

Proposition 2. Let u\j = f(i)g(j) and let h represent either f or g (i.e., both must
satisfy the following criterion). Then a necessary and sufficient condition that a necessary
condition for optimization is monotonicity of row and column sum vector is

n n—2

T. h(i) > y h(m — i) for all m > n > 2
1 0

with m, n chosen so that m is in the domain of definition of h.

Proof. Assume that for a given weighting of columns g, there exist m and n for
which y" g(i) < Xlo-2 d(m ~ *)• If m ~ (2re — 1) > 2 we may increase n by 1, for
the increase will merely add g(n + 1) to the left-hand sum and g(m — n + 1) to the
right-hand sum and m — (2n — 1) > 2 — m — (2(n + 1) — 1) > 0. Thus the two
sums do not overlap and the inequality is preserved. We might then as well assume
that m — (2n — 1) < 2. Hence if we constructed two rows, one of n l's in the first n of
m(m < 2n) positions and a second of (n — 1) l's in the last n — 1 positions, they would
not overlap and there would exist at most one 0 in common at the same column positions
of both rows. Now assume an / row-weighting. The g{j)f(i) combination had as a necessary
condition for all matrices, monotone row and column sum vectors. We then consider
one of the two following matrices:

n n — 1 n n — 1

In either case, there is but one monotone matrix obtainable, and by the "necessary"
conditions they must be minimal. However, the criteria for minimization by row permu-
tation only gives a lesser weight by:
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n n — 1 n n — 1

1 1 ••• 1 1 0 ••• 0

1 1 ••• 1 1 0 ••• 0

0 0 • 0 0 1 • • • 1

.1 1 • • • 1 0 0 • • • 0

0 ... 0 1 1

1 ... 1 0 ••• 0

.1 • • • 1 0 • • ■ 0

Hence the assertion.
Conversely, the proof will make use of the optimization criteria developed between

Examples 2 and 1. Note that if row k contains rk l's and row I has r, l's, then for row k
to precede row I in the optimal matrix, with rk > r, , the sum of (/-weights of row k
(denoted Gk) must exceed the sum of </-weights in row I (G-',). Denote by G'k and G[ the
sum of g-weights associated with l's in rows k and I, respectively, with the l's placed
in the first rk positions for G'k and the last r, positions for computation of G[ . By mono-
tonicity of g, G'k < Gk and G'k > (?, . Hence G'k > G[ => Gk > Gt . Also, since the row
for G'k contains more l's than that for G[ , in order that the monotonicity of the optimal
matrix hold we have G't > G[ . Hence the necessity of monotonicity of the rows in the
optimal matrix is equivalent to the statement: "In minimizing by permutation of rows
enly, if k > I and k l's appear in the first k places of a row and I l's appear in the last
I places, then the row of k l's appears before that of I l's." From the criteria for mini-
mization by column permutation this becomes

Z) > £ /(I)g(m - })
j=l j=0

where we may take m to be the index at which the last 1 of the shorter row appears.
But the above is equivalent to

Z) (j(i) > Z _ j) for all m > n > 2.
1 0

Hence the assertion. A similar proof can be made for /. Note that the above proposition,
in the case n = 2, implies that

/(l) + /(2) > f(m) for all m

and

?(1) + 0(2) > g(m) for all m.

This implies that / and g must be bounded (increasing functions). We now further
characterize these weights:

Proposition 3. Let j(i) (or g(j)) be a weight junction component giving rise to the
necessity condition oj the -preceding proposition. Then f(i) must be of the form k — h(i)
where h(i) is strictly decreasing, k > 0, and an upper bound for h and for p = limi_„ h(i),
is given by

k ~ V > £ (Hi) - p).
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Further, any f of this form can be used in a "nice" product weighting.

Proof of sufficiency. If / is "nice", the preceding proposition gives £7 /(*') > Zr
f(m — i) for all rn in the domain of definition of /. [We assume here that / can be extended,
if necessary, to let the criterion for all n, and show later that such is always possible.]
The previous remark gives /(l) + /(2) = fc > f(m), since / is increasing, fc — f(i) is
decreasing, and / = fc — (fc — /). Define h(i) = fc — /({). Now fc — f(i) > fc — /(1) = /(2)
so h(i) is decreasing and bounded below by /(2) > 0; hence there exists p such that
f(i) —> p > 0 and f(i) > p for each i — 1, 2, • • • .

Now from Proposition 2, we have

£ fc — h(i) > £ fc — h(m — i),
1 0

fc — £ h(i) > — £ h(m — i),
1 0

n

fc > £ [h(i) — ft(m — n + {)] + ft( 1),
2

n

fc > ft(i) + lim £ [ft($ ~ ft(m ~ n + 1)].
m~* os 2

fc > ft(l) + Y, (Hi) - p),
2

fc — p > ib (^(o — ?)•
1

But h(i) — p > 0, so that the above sum has a limit and

k ~ p > jt, (Hi) ~ v) ■
1

Proof of necessity. Now if fc — p > 23° (Hi) ~ T>) and f(i) = fc — ft(t'), where
h(i) is decreasing and h(i) —> p, then h(i) > p and fc — p > Z" (ft(i) — p) for any n.
But p < h(j) for all j, specifically for j = m — n + 1, so that

co n n

fc — p > H (ft00 — p) > £ — p) > £ (ft© — ft(»i — ra + t) + ft(l) — p)
1 1 2

n

<=> fc > ft(l) + £ ft(i') — ft(m — n + 1),
2

n n —2

nfc — £ ft(j) > (n — l)fc — ft(m ~ *).
1 0

23 i(i) > £ /o - »)•
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This is the criterion of the second proposition. Hence the assertion.

Proposition 4. If f(i) (/(;)) is defined and satisfied the criteria of Pro-position 1
for i — 1,2, • • • , k, it can be extended on k + 1, k + 2, • • • .

Proof. Define f(i) = f(k')/2'~k for i > k. For m < k the assertion of Proposition 1
is true by assumption. If m > k and n < k, we note that the n — 1 l's in the k, k — 1,
• • • , k — n + 2 positions, "outweight" those in the m, m — 1, m — 2, • • • , m — k + 2
positions. If m > k and n > k, we have by assumption that the l's in positions 2, • • • , k
at least equal the weight of l's in the first k positions of the lesser set, and the first 1 out-
weighs the /cth 1 which outweighs any number of l's which go after it. Hence the as-
sertion.

In particular, Proposition 3 permits any decreasing sequence whose series converges
as a possible weight component. For example, a necessary condition for minimization
with weight function wu = (1 — e-*)(l — e~') are monotone row and column sum vectors.

I would like to express my thanks to my student, Mr. L. Gordon, for his interest in
this problem.
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