
516

PERIOD BOUND FOR AUTONOMOUS LIENARD OSCILLATIONS*

By R. A. SMITH (University of Durham, Durham, England)

1. Introduction. This paper concerns the generalized Lienard differential equation

x" — kx'j(x) + g(x) = 0 (1)

where prime denotes differentiation with respect to the real variable t, k is a positive
parameter and f(x), g{x) are continuous real functions of the real variable x. Also, g(x)
satisfies a Lipschitz condition or some other condition which ensures uniqueness of
solution of the initial value problem. Furthermore,

sign g(x) = sign x, (2)

for all x, where sign y = 1, 0, — 1 for y > 0, y = 0, y < 0, respectively. Sufficient con-
ditions for (1) to have a nonconstant periodic solution have been given by various
authors [6, pp. 305, 321], It is assumed throughout this paper that (1) has at least one
periodic solution x(t) with least period T. When k is small, an expression for T can be
obtained by Poincare's method [1, p. 112], Also, Lienard and later writers have given
asymptotic formulae for T as k —> + °o (see [1, Chapters 4, C] and [5]). But for values of
k between these extremes little seems to be known about T. For the special case of
van der Pol's equation (i.e. when f(x) = 1 — x2, g(x) = x), T has been computed numer-
ically in the range 0.1 < k < 20 by Urabe [7, p. 222] and others. Also, Graffi [3] showed
that if there exists a constant H such that xg(x) < Hx for all x then two successive
zeros ti , <2 of any solution x{t) of (1) satisfy \h — t2\ > This gives 2tt/\/H as
a lower bound for T since any periodic solution has at least three zeros in some closed
interval of length T because of (2). The object of the present paper is to provide a simple
upper bound for T which is valid for all k. Write

Fix) = f m dh G(x) = f g(0 dt (3)
^0 ^0

and assume that positive constants v, a, a, b, /3 exist such that

2v2G(x) < <7(a;)2 for —a < x < a, (4)

f(x) 9^ 0 for —b<x<p. (5)

If g(x) is differentiate then (2) and the equation

2vG(x) - gix)2 = 2 f (v2 - dg/d£)g(Q d£
Jo

show that v2 < dg/dx in (—a, a) is a sufficient condition for (4).

theorem 1. Suppose that f(x), g(x) satisfy (2), (4), (5). I] x(t) is a periodic solution
of (1) with least period T which has —a< x(t) < a for all t then

T < u_1{8 + 67_1/Vi + J2) + 87-1/2 max {J, , J2)}, (6)
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where
J* a /*0

j+(x) dx, J2 = k f+(x) dx, /+(z) = max (0, j(x))
0 J-a

and y = min {2G(—b), 2G(f})\.

In practice, it is often easier to prove the existence of a periodic solution x(t) than
to determine constants a, a satisfying —a < x(t) < a. But in cases when (4) holds in
— oo < x < m and Jl" f+(x) dx converges, this task can be avoided by taking a,a= + oo
in (6). When this is done for van der Pol's equation, (6) gives the estimate T < 8 +
(40fc/3) which, for small k, is close to the result T = 2ir + 0(fc2) obtained from the
Poincare expansion [1, p. 117]. But for large fc it is a cruder estimate of the asymptotic
formula T ~ 1.614 k of Lienard [1, p. 105]. This discrepancy is to be expected because
very little has been assumed about f(x) in Theorem 1. The inequality (6) is sharpened
in Sees. 3 and 4 at the cost of more restrictive hypotheses on f(x).

2. Proof of Theorem 1. From (3), G{0) = 0 and from (2),G(x) is strictly decreasing
in (— oo, 0) and strictly increasing in (0, oo). The continuous function

<t>(x) = [2G(x)]l/2 sign x (7)

is therefore strictly increasing in — oo < x < «>. Also is differentiable in this range,
except possibly at x = 0. If y(t) = x'(t) — kF(x(t)), where x(t) is a periodic solution
of (1) and F(x) is given by (3), then x(t), y{t) is a periodic solution of the Li&iard system

x' = y + kF(x), y' = —g(x) (8)

and as t varies the point (x(t), y(t)) describes a simple closed curve T in the (x, y) plane.
From (2) and (8),

sign x' = sign [y + kF(x)], sign y' = —sign x. (9)

The trajectories of (8) therefore cross the curves y = —kF(x) and x = 0 in the directions
shown by the arrows in Figure 1 and T must encircle the origin in the clockwise sense
as t increases. Also (9) shows that x' and y' are of constant sign along each of the four
arcs PQ, QR, RS, SP of T. Therefore y and 4>(x) are monotonic functions of t along each

Trajectory 7"*^

Graph
y = -kF(x)

Fig. 1.
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of these arcs. By considering the total variation of y and <f>(x) around V we obtain

[ \y'\dt = 2(p - r), [ \<j>'\ dt = 2[<j>(q) - <f>(s)],Jr Jt (10)

[ WY + (<<t>')T2 dt<2\p-r + 4>(q) - d>(s)],
Jp

where (0, p), (q, —kF(q)), (0, r), (s, —kF(s)) are the coordinates of P, Q, R, S, respec-
tively. Define W(x, y) > 0 by

W(x, y) = [(y + kF(x))2 + 2G(x))w\ (11)

Then (8) and (7) give (x')2 + 2G(x) = W(x, y)2 and

(:vT + («i>'? = g(x)2 + hG{x)'lg(x)2{x')2 = \G(xylg(x)2W{x, y)2.

This and (4) give (y')2 + (4> )2 > v2u>2 on T, where to is the minimum value of W(x, y)
on T. Substitution in (10) gives

VO)T < 2[p - r + 4>(q) - *(«)] = 2[WP + WR + WQ + Ws], (12)

where WP , WQ , WR , Ws are the values of W(x, y) at P, Q, R, S. From (11), the deri-
vative of \W(x, y)2 following a solution of (8) is

W'W = (y' + x'kf) (y + kF) + x'g = (x')2kf(x). (13)
By considering J W' dt along the arc PQ we get

WQ - WP = f° W~1(x')2kj(x) dt < f° W~\x')2kU(x) dt.J p J p

Since W~l \x'\ < W'Kx')2 + 2G{x)]l/2 = 1, and x' > 0 on PQ, this gives

WQ — WP < k [° x'f+(x) dt = k f f+(x) dx < Ji . (14)
J p J o

Integrating W' along the arcs QR, RS, SP, we get similarly

WR - Wo < •/, , Ws - WR < J2 , WP - Ws < J2. (15)

Let M be the point on r at which W(x, y) takes its minimum value co. We now discuss
separately the four possible cases when M lies on each of the arcs PQ, QR, RS, SP. In
the case when M lies on PQ we integrate W' along the arc MQ and use (13) to get

Wa — « = [° W~\x')2k](x) dt <k f° x'f+(x) dt < Jt. (16)
J M J P

It then follows from (15), (16) that
7Ji + 3J, > 4{WQ - co) + 3(IFK - WQ) + 2{WS - WR) + (WP - Ws),

= Wp + W0 + WR + Ws - 4w. (17)

In the case when M lies on QR we integrate W' along the arc MR to get WR — co <
instead of (16). Then (14), (15) give

5(Ji + J2) > ±(WR - co) + 3(Wa ~ WR) + 2(Wp - Ws) + (W0 - WP),

= WP + WQ + WR + Ws - 4co. (18)
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In the case when M lies on RS we integrate W' along the arc MS to get Ws — u < Ji
instead of (16). Then (14), (15) give

3 J, + 7J2 > 4(TFS - «) + 3(17, - WB) + 2(Wa - WP) + (WB - W0),

= WP + WQ + WR + Ws — 4<o. (19)

In the case when M lies on SP we integrate W' along the arc MP to get WP — w < Jt
instead of (16). Then (14), (15) give

5(/, + Ja) > 4(17, - «) + 3(WQ - WP) + 2(Wb - TT0) + (JFS - WR),

which is (18) again. Each of the three possibilities (17), (18), (19) gives

WP + WQ + WR + Ws < 4co + 3 (J, + J2) + 4 max (/, , ./,). (20)

This and (12) give

T ^ v x[8 -j- 6w 1(Ji + Ja) + 1 max (Ji , «/»)]. (21)

If (m, n) are the coordinates of the point M on T at which W(x, y) attains its minimum
value co then f(m) = 0 by (13). Hence m lies outside ( — b,B) by (5) and therefore G(m) >
min |G(-b), GO?)} = |7. From (11),

co2 = (M + kF(m))2 + 2G{m) > 2G{m) > y. (22)

Replace co'1 by y~1/2 in (21) to obtain (6). This establishes Theorem 1.

3. Simple improvements.

Theorem 2. // f(x), g(x) satisfy (2), (4), (5) and

sign f(x) = sign [ix + 6)Q3 - x)], (23)

/or all x, then (6) can be replaced by

T < iTl{8 + 107-1/2(/i + J*)\- (24)

Proof. Since the abscissa m of M satisfies /(m) = 0, (23) shows that m is either —b
or /3 and that /(x) > 0 for all x between m and 0. It follows that M cannot lie on the
arc PQ because otherwise W(x, y) would be strictly increasing along the arc PM by (13)
and W(x, y) would not take its minimum value at M. For the same reason M cannot he
on RS. The possibilities (17), (19) are therefore excluded and (20) can be replaced by
(18). This leads to (24). When Ji ^ J2, (24) is a sharper inequality than (6).

Theorem 3. If fix), g(x) satisfy (2), (4), (5) and

f(-x) = f(x), gi~x) = -gix), (25)
for all x, then (6) can be replaced by

T < iT'{8 + 67_1/Vi + /.))• (26)

Proof. From (3) and (25) we get Fix) = —Fix), G(—x) = Gix). If x(t), y(t) is a solu-
tion of (8) then so is —x(t), —y(t) and as the point (x(<), 2/(0) travels around T, the point
i~xit), —yiO) travels the curve T* got by reflecting T in the origin. Since T, T* are
trajectories of (8) which intersect they must coincide. That is, T is symmetric with
respect to the origin. If M* is the reflection of a point M at which Wix, y) attains its
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minimum value <o on T then W(x, y) = u at M* also because W(—x, —y) = W(x, y)
by (11). We can therefore assume that M lies either on SP or on PQ. If M lies on SP then
M* lies on QR and we get both inequalities Wr — oj < ./2, WR — co < J, instead of (16).
Then (14) and (15) give

3(J, + Jx) > 2(WP - a) + 2(WK - «) + (WQ - WP) + (Ws - WR),

= WP + WQ + WR + Ws - 4CO. (27)

If M lies on PQ then M* lies on RS and we get both WQ -co < Jx and Ws — a> < J2 ■
Then (15) gives

3(Ji + J2) > 2(Wq - «) + 2(WB ~ «) + (WR - WQ) + (WP - Ws)

which reduces to (27) again. It follows that (20) can be replaced by (27) and the argu-
ment then leads to (26). For van der Pol's equation (26) gives T < 8 (1 + fc) which
overestimates T by a factor of 5 when k is large.

4. Other improvements. So far information about the rate of growth of the damping
function F(x) has not been used. This will now be taken into account.

Theorem 4. Suppose that f(x), g(x) satisfy (2), (4), (5) and that c, d are positive
constants such that

2 + G(x)-1k2F(x)2 > 2c2{l + 2y'1/2(J1 + J2)}2 (28)

for all x with 2 G(x) > d. Then (6) can be replaced by

ivT < 1 + 7_1/Vi + J, + max (J, , J9)] + max (c~\ (d/y)1'2). (29)

Proof. Let N be the point on T at which W(x, y) takes its maximum value 2 on T.
By considering / W' dt along the arc MN and substituting for W' from (13) we get

SI - w = f W~\x')2kf(x) dt < f \x'\ kf+(x) dt < 2(J, + J2).
J m J r

This and (22) give

Q, ̂  co -f- 2 (Ji J2) ^ cojl 1y ' (J 1 -|- J2)} ■ (30)

The derivative of L(x, y) = y2 + 2G(x) following a solution of (8) is

L' = 2 yy' + 2 g(x)x' = 2kg(x)F(x).

The maximum value of L(x, y) on r is therefore attained at a point where F(x) = 0.
But (11) shows that L(x, y) = W(x, y)2 when F(x) = 0. Hence L(x, y) < Q2 at all points
of T. In particular, this holds at the point Q = (q, —F(q)) at which W% = 2G(q). There-
fore

fl2 > L(q, -F(q)) = [1 + \G(q)~1k2F(q)2]W% . (31)

Either d < 2(7(q) or d > 2G(q) = Wq . In the former case (28) holds for x = q and (31)
gives £2 > c[l + 2y~l/2(Jl + J2)]WQ . Then (30) gives c0 > cWQ . Hence, WQ < max
(dl/2, w/c) in both cases. Since Ws = 2G(s), the same argument can be applied to the
point S, instead of Q, to give the same bound for Ws and therefore

WQ + Ws < 2 max (d1/2, co/c). (32)
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As in Sec. 2, we now discuss separately the four possible cases when M lies on each of the
arcs PQ, QR, RS, SP. When M G PQ, (16) holds and then (15) gives

4Jx + 2 J2 > 2(WQ - «) + 2(WB - WQ) + (WP - Ws) + (Ws - Wa).

When M G QR we have WR — co < Jx . Then (15) gives

2(Jx + J2) > 2(17,, - co) + (Ws - WK) + (WP - Wa).

When M G RS we have Ws — co < </2 . Then (14) and (15) give

27, + 4J2 > 2(TFS - co) + 2(Wp - Ws) + (W0 - WP) + (WR - WQ).

When M G SP we have WP — u < J2 . Then (14) and (15) give

2(J! + J2) > 2(TFp - «) + (TFq - TFp) + (TFb - TT0).
In all four cases these inequalities give

Wp -f- Wr ^ 2co -(- 2(Ji + J2) + 2 max ((/! , t/2). (33)

Substituting (32) and (33) in (12) we get

\vT ^ 1 -J- Co '[t/i -f" J2 H- max (Ji , </2)] max (c 1, d1/2a> :).

Using (22), we can replace co_1 by y~1/2 to obtain (29).

Theorem 5. If both (23) and (25) are added to the hypotheses of Theorem 4 then (29)
can be replaced by

\vT < 1 + + J2) + max (c-1, (d/y)u2). (34)

Proof. As in the proof of Theorem 3, (25) implies that the minimum value co of
W (x, y) is taken at two points M, M* on r which are symmetrically arranged with respect
to the origin. As in the proof of Theorem 2, (23) implies that M, M* do not lie on the
arcs PQ and RS. It can therefore be assumed that M G SP, M* G QR- As in Sec. 2, this
implies both WP — « < J2 and WR — u < J1. Hence (33) can be replaced by the sharper
inequality WP + WH < 2 co + ./, + ,/2. Substituting this and (32) in (12) we obtain (34).

5. Comments. For the case of van der Pol's equation, Fix) = x — %x3, G(x) = \x2
and the left-hand side of (28) is monotonic for x2 > 3. In this case (28) is satisfied by
taking d > 3 and c2 = (3 + 8fc)-2[9 + k2(d — 3)2]. Then (34) gives

T < 4 + (Sfc/3) + 4 max {d1/2, (3 + Sfc)[9 + k2(d - 3)2]"1/2(.

The arbitrary constant d can be chosen in the range 3 < d < co so as to minimize the
right-hand side. With d = 7 it gives T < 4(1 + a/7) + (8fc/3) for all k > 0. For large
k this is much closer to Lienard's asymptotic formula T ~ 1.614 k than is the inequality
T < 8(1 + k) obtained from (26).

A general method for finding period bounds for 2 X 2 autonomous systems was given
by Diliberto [2] and modified by Lau [4], The basic idea of their method is to enclose the
trajectory r within a suitable region of known area and then to estimate its length by
finding its maximum curvature. For the system (8) it is a difficult task to locate Y with
enough precision to use their method effectively. Their basic idea is replaced in the present
paper by the inequality (10). One of the advantages of this method is that it can avoid
the task of locating T.
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