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SOLUTION OF A FREE BOUNDARY PROBLEM FOR THE HEAT EQUATION*
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1. Introduction. The continuous dependence of the free boundary on the data in
the following problem has been proved by Cannon and Douglas [1]:

uxx — u, , 0 < x < s(t); u(x, 0) = <j>(x), u,(0, t) = j(t), ^

u(s(t), t) = 0, —\s'(t) + ux(s(t), t) — 0, s(0) = a.

Here f(t) > 0, 4>(x) < 0, 4>(a) = 0, a > 0. Thus the region 0 < x < a is initially solid
with temperature distribution and the region a < x < c° is liquid at the melting
temperature 0. There is an outward flux of heat j(t) at the fixed boundary x = 0 (we
assume the thermal conductivity k, which should appear as a coefficient of ux(0, t), has
been absorbed into /(<))• We have X = pl/k, where p is the common density of liquid and
solid and I is the latent heat. Let sk(t) be the free boundary corresponding to the data
lk(t), 4>k(x), and ak ,k = 1,2. We assume a2 > a,. Then Cannon and Douglas prove, under
appropriate conditions on f(t) and 4>(x),

|«i(0 - s2(t) | < C ai — a, +
«a i

/ \4>i{x) — 4>i(x) | dx + / <t>2(x) dx
J 0 "oi

+ I' Mr) ~ Ur)\ dr] , 0 < t < T. (1.2)

Here C depends on T and B, where the latter is the maximum of ||/t|| and \\<j>'k\\, k = 1, 2,
the norms being taken ove 0 < t < T and 0 < x < x < ak . If we replace the flux
condition at the boundary x — 0 in (1.1) by u{0, t) = /(<), where j(t) < 0, then Cannon
and Hill [2] have proved the stability of the free boundary for that problem.

If we introduce a flux term q(t) > 0 at the free boundary directed into the solid we
have the problem

u„ = u, , 0 < x < s(t); u(x, 0) = 4>(x), ux(0, t) = /(/), ^

u{s{t), t) = 0, —\s'(t) + ux(s(t), t) = q(t), s(0) = a.

Here a > 0. While the free boundary in (1.1) is a nondecreasing function of t, this is not
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true of (1.3). In (1.3) s(t) is, in general, neither nondecreasing nor nonincreasing. Further-
more the free boundary in (1.3) may reach x = 0. This occurs if there is a smallest time
t = u such that \a + H (a) = 0, where

H(t) = f' U(r) - q(r)] dr - f 0(.r) dx. (1.4)
* 0 ^0

If there is such a a then s(a) = 0 and s(t) > 0 for t < a, otherwise s(t) > 0 for all t.
An existence and uniqueness theorem for (1.3) has been proved in [6] under the hypothesis
that f(t), q(t), and <j>'(x) are continuous. In this paper we use the methods of [1], [2] to
prove the continuous dependence of the solution of (1.3) on the data. The regularity
hypotheses are the same as those for the existence and uniqueness theorem, but the
restriction on the sign of q(t) is unnecessary; i.e., the existence and uniqueness proof does
not require that sign restriction nor does the continuous dependence proof. We get the
inequality (2.2) below.

It has been proved by Jiang Li-Shang [5] that the free boundary of (1.1) is infinitely
differentiable. We cannot expect this to be true of (1.3) since, by the second of the free
boundary conditions, the regularity of the free boundary is tied to that of q{t). Thus we
know, from the existence theorem, that q £ C° implies sGC1, and more generally we
expect that q £ Ck implies s £ Ck+1. In this paper we prove the following theorem: if
/'(£), and 4>"(x) are continuous then s"(t) and v'(t)(v(l) = ux(s(t), t)) are continuous
on 0 < i < cr; furthermore tw's"(t) and t1/2v'(t) are continuous on 0 < t < a and uxx{x, t)
has a finite limit at each boundary point except possibly (0, 0) and (a, 0). With these
additional conditions of regularity on the data we can prove that s'(t) and ux(x, t) depend
continuously on the data. We do not give the proof here but refer the interested reader to
the report [7],

In the proof of existence and uniqueness of the solution of (1.3) given in [6] use is
made of continuous dependence in Lemma 1, which states that u{x, t) < 0. A proof that
u(x, t) < 0 for any solution of (1.3), which does not use continuous dependence, is easily
constructed. Suppose u(xi , ti) > 0. It is clear from the representation of u given by (3.2)
that u is continuous on0<£<cr, 0<£< s(t). Since u is 0 on x = s(t) and nonpositive
on t = 0, by the maximum principle u achieves a positive maximum on x = 0, say at
t, where r < ty . If r < U then by a lemma of Friedman [4, p. 49] ux(0, r) < 0 and this
contradicts ux(0, r) = /(r) > 0. If r = tx then the inside sphere property does not hold
at the corner point (0, tx) but we can still conclude that /(^) = ux(0, ti) < 0, from which
we conclude that f(ti) = 0. If /(<j) is 0 we have no contradiction. But the argument above
shows that j(t) = 0 wherever u{x, t) > 0. Hence if t0 is the infimum of those values of
t < ti for which there is some point (x, t) for which u(x, t) > 0 then f(t) = 0 for t, >
t > t0 . Now u(x, t0) < 0, u(s(t), 0=0 and since ux{0, t) = /(<) =0 for t0 < t < tx we
may reflect the solution u(x, t), s(t) across the t axis. This extended solution is 0 on a; =
±s(0 and nonpositive on t = ta and thus cannot be positive in the interior, a
contradiction.

2. Continuous dependence of the solution of (1.3) on the data. Let T < a and let
|!<7|| and [|g||, be the norms of any continuous function g(t) on 0 < t < T and e < t < T.
Let ||0'|| and uy(t) be norms of 4>'{x) and ux(x, t) on 0 < x < a and 0 < x < s(£), and
let ||mx|| and Ht^H, be the norms of ux(x, t) on 0 < t < T, 0 < x < s(t) and e < t < T,
0 < x < s(t). Then we have the following lemma.



1970] A FREE BOUNDARY PROBLEM FOR THE HEAT EQUATION 429

Lemma. Define n, y > 0, and B by

n = [||g||2 TAX2] + 1, 7 = [1 - X-1 ||g|| (TAur)1'2]"1,

B = ll/H 7[(47)" - 1]/(4t - 1) + (47)" max (||<£'||, /(0)),
where, in the definition oj n, [2] is the largest integer <x. Then ||y|| < B, Hw^l < B, and
0 > u(x, t) > B(x — s(t)).

This lemma corresponds to (1.4) and (1.5) of [1] and to Lemma 2 of [2], The regularity
conditions on the data are the same as for the existence theorem. We divide the interval
e < t < T into n equal parts, h = (T — t)/n, and define |HI* = maxv(t) on e + (k — 1 )h
< t < t + kh (we note that v(t) > 0). From the inequality (33) of [6]

IMIi < nil/11 + 4Ml(e)], r = [1 - X-1 I'/!! (.hA)1/2]-'.
Since ux(x, t) is continuous on e < K e + h, 0 < x < s(t) the maximum principle implies
(it is clear from (3.2) below that ux(x, t) also satisfies the heat equation on 0 < x < s(t),
0 < t < T)

Mi(e + h) < max (||/||, u^t), |H|.) < f[||/|| + 4u^t)}.

Again from (33) of [6]

IHI* < f[||/|| + 4w,(e + h)] < ||/[[(f + 4f2) + (4f)2it1(e).
It follows by induction that

I HI, < ||/||f[(4f)* - l]/(4f - 1) + (4f)V(e).
Thus

11»||. = max (IHI, , IHI,, • • • , IMP < ||/||r[(4f)" - l]/(4f - 1) + (4f)"ul(e). (2.1)
By the maximum principle

Hm^II, = max (||/||t , w,(«), |HI.)-
Then ||w*||, is less than or equal to the right side of (2.1). As e —* 0 ux{x, e) —> 4>'(x) for
x ̂  0, ux(0, e) = /(«)-»/('0), f->7, ||«||f-+ IHI, ||/||« -»11/11, ||«x||, -> |H|, and the right
side of (2.1) tends to B. Thus |H| < B and ||uz|| < B. Finally

/®(i) /»«(*)ttj(£, t) di; > — J B d£ = B(x — s(0).

We can now prove the following continuous dependence theorem.

Theorem 1. Let uk(x, t), sk(t) be the solution oj (1.3) corresponding to the data fk(t),
Qk(t), <£*(z), and ak , k = 1, 2. Let a2 > ax . Then, on 0 < t < T,

||si - Sail, < C X(a2 — a,) + f {^(x) - 4>->(x) | dx + f <j>2(x)
JO J a*

dx

+ [' (l/i(T) - /a(r) | + |fft(r) - q2(r) |) d7
Jo

(2.2)

where |[sj. — s2||( = max (s^r) — s2(r)| on 0 < t < t arid C is given by

C = 2X_1[1 + 4T1/2C\] exp (4VC\T), C\ = tT1/2.B[1 + B(T/w)l/2} exp (B2T/4).
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On the common domain of definition oj uJ(x, t) and u2(x, t) ive have

Iu\x, t) — u{x, 01 < ||<*>i - 4>all + 4tW2 I|/x - /all, + B ||Si - S2||, . (2.3)
To prove the theorem we proceed as in [1]. We obtain the following equation by inte-

grating uxx = ut over the domain 0 < x < s(t), 0 < r < t:
t»t pa r*8 ( t )

s(0 = a + X-1 / [/(t) — q(t)] dr — X-' / </>(x) cte + X-1 / w(a:, 0 dx. (2.4)
J 0 ^0 «^0

Let a(t) and @{t) be, respectively, the minimum and maximum of s,(0 and s2(0 and let
5(0 = f$(t) — a(t). Then from (2.4) we get

dr8(f) < a2 — ax + X 1 f [/j(t) — U(t) — q,(r) + g2(r)]
I ̂ 0

+ X-1 | J [01 (x) — <t>,(x)] dx| — X-1 J 4>z(x) dx

' r* a (t) I f*P(t)

/ [u(x, t) — u(x, 0] dx\ + X~l / u\x, t) dx, (2.5)
-0 I 'a(l)

+ X"

where j = 2 if a = Sj and (3 = s2 and j = 1 otherwise. From the lemma we get

—u'(a(t), t) = |u(a(t), t) —u(a(t), t)\ < B 5(t). (2.6)

On 0 < x < a(t), 0 < t < T we write

v}{x, t) — u2(x, t) = v\x, t) + v2(x, t) + v3(x, t) (2.7)

where each vk satisfies the heat equation and the following boundary and initial con-
ditions:

fx(0, t) = 0, Vy(a(t), t) = 0, v(x, 0) = 4>\(x) — <f>2(x),

vl(0, 0 = /,(/) - /2(0, 0 = 0, v\x, 0) = 0,
l£(0, 0 = o, v\a(t), 0 = u\a(t), 0 - u2(a(t), t), v\x, 0) = 0.

The argument now proceeds precisely as in [1] to yield the inequality (2.2). Since we may
reflect v1(x, t) across the t axis, an application of the maximum principle shows that
k'l < ||<#>i — <t>z\\, the norm referring to 0 < x < ai . If v±(x, t) are solutions of the heat
equation in the domain 0<t<T,x>0 corresponding to the conditions

vt(0, 0 = =F |/i(0 - M01, v±(x, 0) = 0,
then we have v+(x, 0 < v2(x, t) < v~(x, t) in the domain 0 < t < T, 0 < x < a(t). Since

v*(x, 0 = 2 f =F |/i(t) - /2(r)| K(x, t; 0, r)
Jo

dr,

where K is the fundamental solution of the heat equation (see Sec. 3), we have |w2| <
4^1/3 ||/i — /2||< , the norm referring to 0 < r < t. We may reflect v3(x, Oacross the t axis
and derive, from the maximum principle and (2.6), |u3| < B ||5[|, . Thus (2.3) is proved.
It is easily seen that Theorem 1 also implies continuous dependence on X.

3. Differentiability properties of the solution of (1.3). The fundamental solution
of the heat equation and the Green's and Neumann's function for the first quadrant are
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K(x, t;£, T) = [4tr(t - r)]",/2 exp [~{x - £)2/4{I - r)],

G(x, t] £, r) = K(x, t] £, r) — K{—x, t; £, r),

iV(z, /; £, t) = Z(a:, /; r) + K(—x, t;£, r).

It is shown in [6] that (1.3) is equivalent to

V(t) = 2 [' v(r)NMt), t-s(r), r)dr

- 2 f j(r)NMt), t-, 0, r) dr + 2 f <j>'(QG(s(t), t; a, 0) d|, (3.1a)
J 0 ^0

s(t) = a — f q(r) dr + f v{t) dr. (3.1b)
Jo Jo

More precisely, if u(x, t), s{t) is a solution of (1.3) on 0 < < < T, 0 < x < s(t) then
v(t), s(t) is a solution of (3.1a, b) on 0 < t < T, and conversely, if v(t), sit) is a solution
of (3.1a, b) on 0 < t < T then s(t) together with u(x, t), defined by

u(x, t) = f v(t)N(x, t \ s(r), t) dr - [ j{r)N{x, t] 0, r) dr + [ <t>(£)N(x, t\£, 0) d£,
0 0 0 (3.2)

is a solution of (1.3) on 0 < i < T, 0 < x < s(t). The existence theorem proved in [6]
shows that if fit), q(t), and <j>'(x) are continuous then vit) and s'(t) are continuous. The
following theorem shows the implications, for (1.3), of one additional degree of regu-
larity on the data.

Theorem 2. Let f(t) and q(t) have continuous first derivatives on t > 0 and let 4>(x)
have a continuous second derivative on 0 < x < a. Then, jor any T < cr, v'(t) and s"(t)
exist and are continuous on 0 < t < T, t1/2v'(t) and tl/2s"(t) are continuous on 0 < t < T,
and utx(x, t) has a finite limit at each boundary point except possibly (0, 0) and (a, 0).

sL
dt

We know that (1.3) and (3.1a, b) are equivalent. If we assume v'(t) exists then

[ v(t)Nx(sQ), t) dr
Jo

= v(0)Nx(s(t), t) a, 0) + f (~ + )NMt), t; s(r), r) dr. (3.3)

We obtain (3.3) by adding the two equations (3.4) below, letting e —> 0, and differen-
tiating with respect to t.

f f jrv(r)NMv), V! s(t) , t) dr dr]J( J0 or

= f {v(tj — e)Nx(s(n), 17; s(r/ — «), rj — e) — v(0)Nx(s(ri), ij; a, 0)} d-q,
(3.4)

[ [ v(t)Nx(s(ri), ij; s(t), t) dr drj
J ( J o or]

= f {v(T)Nx(s(t), t) s(r), t) — v(t)Nx(s(t + e), r + «;s(r), r)j dr.
J 0
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Next we get (3.5) below by differentiating under the integral on the left, using GIX =
(7{{, Gx = — N( , and integrating partially:

|/V©W),*;£,0)^
= 0'(a)Gt(s(0, t) a, 0) - *'(O)Gt(s(0. 0, 0) - f <t>"(H)G((s(t), t\l, 0)

•'O

- *; a, 0) - 4,'(0)N(s(t), f, 0, 0] + s'(t) ['4>"Wm, *;$. 0) d(.
(3.5)

Finally we have

~ £ f(rWMt), t; 0, r) tfr = /(O)^(s(Z), /; 0, 0) + [' (~ + |)/M^(s(0, /; 0, r) dr.
(3.6)

Equation (3.6) is proved in the same way as (3.3). On differentiating (3.1a, b) and using
v(0) = 4>'(a) we get

v'{t) = -2s'(t)W(a)N(s(t), t; a, 0) - <l>'(0)N(s(t), t) 0, 0)]

+ 2[0'(O) - /(0)]ATx(s(/), t- 0, 0)

£ (|; + ^(r)^(s(0,/;s(r),r)dr

I' (£ + h)f(T)NM0i 0> r) dr

- 2 f 0"©[C£(s(/), /; 0) - s'(l)N(s(t), f; £, 0)] (3.7a)
^0

s'(/) = X_1(i>(/) - 9(0), «(0) = a. (3.7b)

Conversely on integrating (3.7a, b), using i>(0) = 4>'(a), we get (3.1a, b). Thus, if (3.7a, b)
has a continuous solution v'(t), s(<) (then s'(i), s"(£) exist and are continuous) then
(3.1a, b) has a solution i»(i), s(0 such that v'(t), s'(t), s"(t) exist and are continuous.

It is now necessary to prove that the system (3.7a, b), together with t>(0) = <£'(a),
has a unique solution. The uniqueness of the solution of (3.7a, b) follows from the unique-
ness of the solution of (3.1a, b) since a solution of (3.7a, b) is also a solution of (3.1a, b).
The uniqueness of the solution of (3.1a, b) has been proved in [6]. Turning to the question
of existence we follow the procedure in [3, II] and eliminate the singularity t~x/2 in
(3.7a) by introducing V(t) = t1/2v'(t). The system assumes the following form:

V{t) = -2s'{t)t1/2W(a)N(s(t), t- a, 0) - <#>'(0)iV(S(/), *; 0, 0)]

+ 2/17V(0) - f(0)Wx(s(t), t; 0, 0)

+ 2 I (f-

+ 2

-1/2TV V s(t) - s(t) , . S'(t) - S'(r)
r V (r) —,  + v(r)  r 

t T t ~ T

, . («(/) - s(r))V(0 - a'(r))- i(t> 2 K(s(t), t; s(r), r)
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+
L It — T

- »(r) g(-,Wi ,.sMi yd7

_,» [ {am + mis. x*ssf}xm *,„> *
- 2/"* f <."(£)[<?,(!((), /; {, 0) - «, 0)] <f£, (3.8a)

Jo

v(t) = 0'(a) + f t~1/2V(t) dr, (3.8b)
Jo

s'(t) = x_1(v(0 - 3(0), 8(0) = a. (3.8c)

We prove now three lemmas which together prove the theorem. The first of these
lemmas states that there is a solution of (3.8a, b, c) for sufficiently small t.

Lemma 1. There is a t0 such that there is a continuous solution V(t), v(t), s'(t) of
(3.8a, b, c) 07i 0 < t < t0 (it follows from (3.8b, c) that t1/2s"(t) is continuous on 0 < t < t0).

To prove the lemma we define the Banach space C(t0) of continuous functions V(t)
on 0 < t < t0 with norm ||F(0|| = max |F(i)[- Here ta is to be determined. Let C(t0, M)
be the closed sphere of functions satisfying ||F|| < M. Then (3.8a), together with
(3.8b, c), defines a mapping W = S(V) of C(t0 , M) into C(t0). From (3.8b, c) we get

I HI < *'(a) + 2t\/2M = Mi] , (3.9)

Ik'll < A_1(wi + ||g||) = m2 , (3.10)
|s(t) — s(r)| < m2(t — r). (3.11)

Here all norms of functions of t, and all appearing later in the proof of this lemma, are
taken over the interval 0 < t < t0. We select M and ta subject to

2m2t0 = 2\~\4>'(a) + 2t]/2M + \\q\\)t0 < «■ (3.12)

Then from (3.11), taking r = 0,

a/2 < s(t) < 3a/2. (3.13)

We note that since s"(t) = A_1(F(0/i1/2 — q(t))

s'(t) - s'(r) < \~1(M/t + Os'll)

< X-V-,/2(M + tY2 lig'H) = m3r-1/2,
(3.14)

for t < t. We can now derive upper bounds for the absolute value of each of the terms
appearing on the right of (3.8a); in the derivation of these bounds we use

x exp ( — ax) < (ae)~\ / [r(t — r)]~1/2 dr = t.
Jo

We write 5 = \<t>'(0) — /(0)| and write the bounds, in (3.15) below, in the same order as
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the terms appear in (3.8a).

\W\ < 2m2 H^'ll + 6a~' S + tl/2(Mm2 + mxmz + m1m\tl/2)

,/2 [' f 3Ma
io Jo Ls'\i -

, ,1/;! , , , 2m,m2 , 9m,m,a2
• 'o / 1/2/f \ ~t~ . ~r(t — r) t — t (t — t)

+ / | — n' n + rn-2 11/11 + 9am.

K(a, t) 0, r) dT

1/2 r> r3a. urn
to Jo \_2(t - r) K(a/2, t\ 0, r) dT

t) t — t 8(t — r)

+ 2 ||0"|| + 4/i/2 ||*"|| m2 . (3.15)

In the first term in the first integral we introduce the change of variable t = Then
that term is equal to

(to Y" f1 3Ma ( a2 \ ^ fX/2 [' Ma 4(1 - f)
W J0 f1/2(l - f)3/2/ exp \ 4/(1 - f)J - to Jo f1/2(l - r)3/2 «2e f

< 5Ma~*tl/2.

In the other five terms in the two integrals we introduce the change of variable x —
(t — t)"\ Then t no longer appears explicitly in the integrands. The limits of integration
are t'1 and °°, and if we replace t'1 by t^ we increase each of the five terms. With this
replacement let B(t0) be the sum of these five terms; B(t0) is a decreasing function of a.
Then we have from (3.15) ||IF|| < D + t\/2R, where

D = 2X_1(0'(o) + llalj) \\<t>'\\ + 6a"1 5 + 2 ||*"||,
R = B(t0) + 5Ma'1 + 4 ||<£"|| m2 + + m,??!3 + Mm2 + 4\_1jW ||0'||.

We choose M — D + 1; M depends on ta through ||g||. We choose t0 so that t\,2R < 1.
We note also that (3.12) has to be satisfied. Then ||TF|| < M and therefore W = s(F)
maps C(t0, M) into itself.

We prove now that W — s(F) is a contraction for appropriately chosen t0. Let
Wk = s(Ft), k = 1, 2, « = ||Fi — F2||. Then we prove that \\Wi — W2|| < t\/2Fe, where
F is a function of the quantities

a, to, 5, <t>'(a), ||<£'||, ||0"||, H/ll, ll/'H, X"1, M, m1 , m2, m3 ,

which is continuous in t0 for ta > 0. Thus by choosing t0 subject to t\/2F < 1 as well as
tl/2R < 1 and (3.12) the mapping W = <S(F) of C(t0, M) into itself is a contraction.
From (3.8b, c) we derive the following inequalities

MO - »s(0| < 2tl/2e < 2tl/2e, Ih - va|| < 2t\nt,
|«,'(0 - S2'(/)| < 2X_Y/2e < 2\-ltl/2e, |ls( - S2|| < 2\~1t10/2e,

18.(0 - S2(0| < 2\~1t:>/2e < 2\~ltl/2t, |(s, -sa|l < 2X~ltl/2e.

Considering now the difference of the first terms of Wx = ^F.), W2 = S(V2) we have

2tu\s[{t) - t- a, 0) - <^'(0)^(8.(0, 0, 0)]

+ 2tl/2s2(t)[<t>'(a)N(s1 (0, t; a, 0) - 4>'(0)N(Sl(/), /; 0, 0)
(3.16)

- {4>'(a)N(s2(t), t- a, 0) - <*>'(0)jV(s2(0, t; 0, 0}].
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The absolute value of the first term of (3.16) is < 4A"1 | [<//][ t\/2e. Using the mean value
theorem the second term of (3.16) is

2t1/2s'2(t)(si(t) - s2(0) \<t>'(a)Nx(<r(t), t- a, 0) - 4>'(0)Nx(<r(t), t; 0, 0)} (3.17)

where cr(t) lies between Si(t) and s2(t). Thus the absolute value of (3.17) is < 12a |[<^'||
m2\~ltl/2i and therefore the absolute value of (3.16) is < (1 + 3am2)4X_1 ||<£'||
The difference of the second terms is

2^V(0) - f(0))[Nx(Sl(t), /; 0, 0) - Nx(s,(t), t; 0, 0)]
(3.18)

= - /(0))(s,(0 - s2(W,M0, t; 0, 0).
Using (3.13), which is true for <r(t) also, and x exp ( — ax) < (ae)-1, the absolute value
of (3.18) is < 8X_1 otl/2e. The difference of the third terms we write as follows:

+

+

-<-{/; t~'/2(V i(r) - F2(r)) <;»!«, r) dr

[' t~'/2V2(t) ~ s'(r) _ *(0 ~ S*(T1 |/f(Sl(0, t) s,(r), r) dr (3.19)
J 0 _ t T ^ J

/' r-W2V2(r)S2{t] 5 »'(r) [A'(Sl(0, r) - K(s2(t), /;s2(r), r] dr}-

The absolute value of the first term of (3.19) if < tl„/2m2e. The bracket in the second term
can be written s[(ti) — s',(<i), where r < < t, so that the absolute value of the second
term of (3.19) is < 2The bracket in the third term can be written

{s,(0 - s,(r) - [s2(t) - s2(T)]}iiri(a:1 , /; 0, r)

_ /s,(Q - S,(r) S2(Q ~ S2(r)\ X, ( X2 \
\ / — r t — r J 4 [7r(t — r)]17" \ 4 (/ — r)/

where 2;, lies between s,(<) — s,(r) and s2(0 — s2(r), so that the absolute value of the
third term of (3.19) is < 3a\~lMm2t0e. Thus the absolute value of (3.19) is less than or
equal to

ttT{m2 + 2\~X"M + 3 a\-lMm2tV2).

The difference of the fourth terms can be written

Mr) - V2(r)) S'(t] ~ fTl K(Si(t), t; «>(r), r) dr

+

+

sup - «?(r) _ m - s2(t)
t — t t — r

K(s1(t),t-,s1(r),T)dT (3.20)f V2(r)

/' v2(t) [K(Sl(t), t-Sl(r)i T) _ K(s2(t), /; S2(r), r)] rfr

The absolute value of the first term of (3.20) is < m,fin/2t. The bracket in the second
term can be written

8i"(/i) - 8i'(h) = X~Wi) - »£&)) = x-^r1/2(F1(/1) - Fs(/0),

where t < U < t. Therefore the absolute value of that bracket is < X~V"1/2e and the
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absolute value of the second term is < \~1mlt10/2e. The absolute value of the third term
is 6d\~1m1m3t0e. Thus the absolute value of (3.20) is less than or equal to

«<J/2(m3 + \~1mi + 6a\~1mlm3t0).

The general form of the argument is now clear and we may regard Lemma 1 as proved.

Lemma 2. Suppose (3.8a, b, c) has a solution on 0 < t < T, where T < a so that
s(t) > 0 on 0 < t < T. Then uxx(x, t) has a finite limit at each boundary point except
possibly (0, 0) and (a, 0).

The existence of a solution of (3.8a, b, c) implies that v'(t) exists and is continuous
on 0 < t < T. Starting from (3.2) we form uxx(x, t). Using the following equations

Nxx(x, t) s(t), t) = -(cI/c1t)N(x, t; s(r), r) + s'(r)G((x, t\ s(r), r),

Nxx(x, t; 0, t) = -Nt(x, t; 0, r), Nxx(x, t; |, 0) = NH(x, V, £, 0),

and performing several partial integrations, we arrive at

uxx{x, t) = fo'(0) - K0)]N(x, /; 0, 0)

+ [ v'(t)N(x, t; s(t), t) dr + f v(t)s'(t)G£(x, t) s(t), t) dr (3.21)
Jo J 0

- [' j\r)N(x, t- 0, r) dr + [' 0"©A'(x, t; £, 0) d£.
»^o •'o

Lemma 2 follows from (3.21) since each term on the right of (3.21) has a finite limit at
each boundary point except (0, 0) and (a, 0).

We need upper and lower bounds for s(t). Let J(t) = \a + H(t), where H(t) is de-
fined by (1.4). Then J (I) is positive for 0 < t < a. Let m(t) = 2 ||/|[, (t/ir)l/2 + 2 ||</>||,
where the norms are taken on 0 < r < ( and 0 < x < a. Then s(t) is subject to the
bounds

J(t)/(m(t) + X) < sit) < \~lJ(t). (3.22)

To prove (3.22) we note that since u(x, t) < 0 (2.4) implies the right half of (3.22).
Since v(t) > 0 (3.2) implies

0 > u(x, t) > — ll/ll, [ [tr(t — r)]"17" dr — 2 \\<t>\\ = —m{t).
J 0

Thus, from (2.4), \s(t) > J{t) — m(t)s(t) and the left side of (3.22) follows.
We will need a bound on u2(f) = max |uxx(x, 0| on 0 < x < s(t) in the discussion

below; we derive it now from (3.21). Norms of functions of t will be taken with respect
to the interval 0 < t < T. The absolute value of the first term on the right of (3.21)
is < sr1/2. The absolute value of the second term is < irU2 ||F||. The absolute value of
the fourth term is < 2T1/2 ||/'||. The absolute value of the fifth term is < 2 ||<£"||. We
need to estimate the third term. Let a and /3 be respectively the minimum of the left
side and the maximum of the right side of (3.22) on 0 < t < T. Then a < s(t) < /3,
and a > 0 since T < a. The absolute value of the third term on the right of (3.21) is
less than or equal to
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(16tt)-1/2 I Ml ||s'|| £ {* ~ s(r) exp (-(a! - s(r))2)

(3.23)

+ X + s(t)
 --a/5 exp

( (x + s(t))2\
(.t - T)iri ^ \ 4(/ - r) )

and the integral in (3.23) is less than or equal to

[' \x - «(01 ,vn ( (x - s(t)f\ (s(t) - x)(s(t) - s(r))
i0 (t _ T)^ exP 4(f - r) ) exp 2(T^)

I f lla'M , . f 2/J /
4(* — t);

< Ja exp ) exP 03 lis'11/2) dr + 2rI/2 ||s'|| + 4^TU2/a

< 2tt1/2 exp 08 ||s'ii/2) + 2T1/2 ||s'|| + 4/37rI/2/a.

We have ||t>|| < B and ||s'|| < X_1(||g|| + B). Thus if we write
L = (16X2ir)_1/2£(||g|| + B) (3.24)

• {27r1/2 exp (/3X x(||g[| + B)/2) + 2TW~\ 1 (||g,|| + B) + 4/37T172/«}

we have

«,(<) < «"I/2 + tt172 ||F|| + 2T1/2 ||/'|| + 2 ||*"|| + L. (3.25)

Actually, the inequality (3.25) has no force until we prove that ||F|| is finite, i.e., that
V is bounded on 0 < t < T. This is asserted in the following lemma. We note, however,
that (3.25) remains valid if we replace ||F|| on the right by max |F(r)| on 0 < r < t.
This remark will be used later in this section.

Lemma 3. Suppose (3.8a, b, c) has a solution on 0 < t < T, where T < a so that
s(t) > 0 on 0 < t < T. Then V(<) is bounded on 0 < t < T.

Since a solution of (3.8a, b, c) implies a solution of (3.1a, b), Lemma 2 of [6] implies
that v(t), s(t), and s'(t) are continuous on 0 < t < T. We want to show that v'(t) is
bounded in the vicinity of t = T. Taking the oi'igin of the time axis at T — n, n to be
determined, we may write a system analogous to (3.8a, b, c) with <£"(£) replaced by
m«(£, T — n), a replaced by s(T — /*), V(i) replaced by V*(t') = t'l/2v*'{t'), where t' =
t — (T — n) and v*(t') = v(t). We refer to this system as (3.8*a, b, c). We note that
since wx(0, T — n) = f(T — n) if m ^ T the second term of (3.8a) does not have a
corresponding term in (3.8*a). Let ||F*|| = max |F*(<')| on 0 < t' < tx where ^ < ju.
Then from (3.8*a) we may write an inequality, analogous to ||W|| < D + tl/2R, which
followed from (3.15). The argument leading to (3.15) needs the following modifications.
In place of (3.13) we write a < s(t') < f3. We note that a and /3 do not depend on fx.
In place of (3.14) we use

s'O) - s'(t)
t - < X~'r"I/2(||7*|| + M Ik"
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where the norm | \q'\ | refers to the interval 0 < t < T. This will also be true of the norms
of v, q, f, and /' appearing in the remainder of this argument. We replace mx by ||v||,
m2 by X-1(|M| + |M|), m3 by X_1(||F*|| + n ||g'||), M by ||F*||, and t0 by p. We get

||F*|| < n1/2F ||V*|| + G, (3.26)

where

F = X~'(2 |H| + lk||) + (3*\ (3.27a)
G = 2X-,(|H| + ||3||)«,(r - M) + • • ■ + [2 + VV'dHI + I\q\\)]u2(T - m). (3.27b)

The dots on the right of (3.27b) stand for terms involving ||t>||, ||g||, ||g'||, ||/||, ||/'||, a,
f), and p. The right side of (3.27b) is finite for any choice of p, the last term by Lemma 2.
We may choose p so that 1 — p1/2F > 0. With this choice of p (3.26) implies the bounded-
ness V*(T') on 0 < t' < p and therefore the boundedness of V(t) on 0 < t < T.

We may now complete the proof of the theorem. Let T* be the supremum of those T
such that (3.8a, b, c) has a solution on 0 < t < T. By Lemma 1 T* > 0. We wish to
prove that T* = a. Suppose T* < a] then s(T*) > 0. We write (3.8*a, b, c) with time
origin at T* — /n, n to be determined. The t0 for which we can establish a solution for
(3.8*a, b, c) by the contracting mapping principle depends on inequalities involving
Ui(T* — n), u2(T* — fx)j s(T* — n), and the norms of /, /', q, q' on T* — n < t < T* —
n + t0. In these inequalities we may replace u,(T* — n) and u2(T* — n) by quantities
depending on \ \<t>\\ and on the norms of /, q, q', and V on 0 < t < T*\ this follows from
Ui(T* — n) < B (we replace T by T* in B) and from the inequality (3.25) (but in the
use of (3.25) we suppose n so small that 5(T* — n)1/2 < 2o(T*)~1/2). We may also re-
place the norms of /, /', q, q' on T* — ju < t < T* — ^ + to by the norms of these same
functions on 0 < t < T* + t0. We may replace s(T* — [x) by a or /3, whichever is appro-
priate. Here, as before, a and /3 are, respectively, the minimum of the left side and the
maximum of the right side of (3.22) on 0 < t < T*. As an example of the steps we have
indicated above, consider inequality (3.12), which reads

2A~%[uMT* - m), T* - m) + IMI + 2t'0/2M] < s(T* - M),

M = 2\~1[uMT* - it), T* - m) + - n) + 2u2(T* - m) + 1. (3.28)

If we let C be the right side of (3.25) with t~1/2 replaced by 2(T*)~1/2 then

2X 1t0{B + |[g|| + 2^/2[2X 1(B + ||g||)5 + 2C +1]} < a

implies (3.28). The effect of the changes discussed above is to decrease f0 and to make it
independent of Hence by choosing p. less than t0 we can extend the solution past T*.
We conclude then that T* = a. The remaining part of the theorem follows from Lemma 2.

In regard to the conclusion, in Theorem 2, that s(t) £ C2, it is very likely that the
hypotheses on j(t) and 4>{x) are too stringent. Indeed it is a reasonable conjecture that
s(t) G Ck+1 if q(t) G Ck and j(t) and <t>(x) are merety continuous with a finite number
of jump discontinuities.
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