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ON CERTAIN CLOSED-FORM SOLUTIONS TO PROBLEMS OF WAVE PROP-
AGATION IN A STRAIN-HARDENING ROD*

BY
R. C. SHIEH**

University of California, San Diego

1. Introduction. As has been stressed in a recent paper [1], exact, closed-form
solutions to problems of plastic wave propagation are valuable even if they are based
on highly idealized or even outright unrealistic constitutive equations, because they
furnish welcome means of checking numerical results furnished by computer codes that
use discrete models of plastic continua. In the earlier paper, closed-form solutions were
developed for the propagation of longitudinal waves in a semi-infinite rod of a rigid,
linearly workhardening, locking material. This assumed mechanical behavior qualita-
tively resembles the behavior of earth materials in uniaxial strain. In the present paper,
an alternative mechanical behavior is considered that more closely approaches the be-
havior of earth materials in uniaxial strain but still permits the development of closed-
form solutions for some problems of plastic wave propagation. The assumed stress-
strain curve (Fig. 1) consists of a straight segment OA through the origin followed by a
curve ADFC that is convex towards the strain axis. The fact that the secant modulus
increases along such a curve with increasing strain is in accordance with the observed
behavior of many earth materials in uniaxial strain. In the earlier model, the locking
feature provided a crude representation of this stiffening effect. On account of the pos-
sibility of permanant compaction of earth materials, the slope of the initial straight
loading line tends to be considerably smaller than that of typical unloading lines. With
the view to obtaining closed-form solutions, we shall idealize this type of behavior by
stipulating that, in our model, unloading takes place under constant strain (e.g. DE in
Fig. 1). The dashed lines in Fig. 1 schematically indicate the behavior of earth materials
in uniaxial strain.

A semi-infinite rod consisting of a material of this type is supposed to be subjected
to a compressive stress p(f) at the end £ = 0 that is suddenly raised at ¢ = 0 from zero
to a value p, in excess of the yield stress o, (see Fig. 1), and then monotonically reduced
to zero during the time interval 0 < ¢ < 7. A general discussion of the problem is pre-
sented in Sec. 2, and in Sec. 3 closed-form solutions are given when the stress-strain law
in loading has the form

o = Kge for 0<e<ye,

o, + (¢* — Uv)<:*-— fv) for ¢e>¢,

— €

where K, , ¢, , €%, 0%, and n > 1 are constants, and ¢, = K,e¢, (see Fig. 2). No change of
strain is supposed to occur in unloading (rigid unloading). Zvolinski and Rykov [2] have
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Fic. 1. Stress-strain diagram.

treated the special case where ¢, and hence ¢, vanish, but without obtaining closed form
solutions except for the case of an endstress that is suddenly applied and thereafter kept
constant or is kept constant for a finite duration of time and then suddenly decreased to
zero. In treating the plastic deformation of a steel cylinder striking a target, Lee and
Tupper [3] pointed out that an elastic, perfectly plastic relation between strain and true
stress leads to a relation between strain and nominal stress represented by a curve that is
convex towards the strain axis (and hence resembles the curves in Fig. 2).

2. General discussion of problem solution. To begin, we let ¢ and = represent time
and the Lagrangian coordinate along the rod, and denote by o(z, £), u(z, t) and v(x, t) the
nominal stress, longitudinal displacement, and the particle velocity at time ¢ and station
z. Utilizing this notation and assuming that plane sections remain plane, the equation
of motion of the rod can be written

da/0zx + p /3t = 0. 1)
Since ¢ = —9du/dx and v = du/dt, the following compatibility equation must also be
satisfied:

de/0t + av/dx = 0. @)

The constitutive relation of the rod material, which was qualitatively described in
Sec. 1, furnishes the following additional equations (see Fig. 1):
(1) Loading (de/dt > 0):

o= Kge for 0<e<e,
= f(e for € > ¢, .

It will be assumed that f(e) in (3a) is of class C* in € and satisfies the following conditions:

(32)
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Fic. 2. Power stress-strain law,

f'(e 20, f(e) <Ko, f(e) =K(e) >0 (3b)

where primes denote differentiation of a function with respect to its argument. The sign
requirement on f'(¢) may be relaxed to include the case f'(¢) = 0 at certain points of the
interval. With a minor modification, the results to be derived in this section can easily be
extended to the case for which f’(¢) and f(¢) are discontinuous at a finite number of

points (cf. Sec. 3).
(ii) Unloading (do/dt < 0):

e(z, t) = e (x) for oz, t) < on(x) (3¢)

for all ¢ > 0. Here ¢,(z) and o.(z) denote the maximum strain and stress experienced
at station z during the loading process.
For purposes of this study, the applied end stress ¢(0, t) = p(¢) is defined as

p(t) =0 for ¢ <O,
p(0) = pu(>0), ®
p'(t) <0 for 0<t<r,

p(t) =0 for ¢ 2> 7.

We shall assume that p(f) is of class C* with respect to ¢ in 0 < ¢ < 7 (this continuity
requirement may be relaxed to include a finite number of jumps in p’(f), again with a
minor modification of the analysis).
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Egs. (1)-(3), along with the boundary conditions (4) and proper initial conditions
(which we assume to be zero), define the functions ¢, ¢, and v throughout the x, {-plane
except at lines or curves of discontinuity, which are classified as strong (shock) or
weak discontinuities according to whether these variables themselves or their derivatives
are discontinuous. In the case of a strong discontinuity further relations are necessary
to effect a solution. The latter take the form of jump conditions, obtained by the require-
ment of continuous displacements and the conservative of linear momentum across the
shock; these are

Ac = pp'(DAv  Av = ¢/'(t)Ae. )

The quantities A, A¢, Av in (5) denote jumps in o, €, v respectively across the shock and
z = ¢(i) defines the shock trajectory in the z, i-plane (¢’(¢) is thus the velocity of prop-
agation of the shock with respect to the undeformed configuration of the rod). At a weak
discontinuity o, ¢, v are continuous and their values may be obtained by appropriate
matching of solutions valid in adjacent regions.

Let o. denote the stress at the intersection point C (if any) of the curve ¢ = f(e)
(segment ABDG of Fig. 1) with the extension of the segment OA of Fig. 1. Three
cases may arise in connection with the magnitude of the initial applied impact stress
poif o, # ©: (1) o, < po < 0., (il) po > o, and (iii) p, < 7, . Only the first case, which
includes the third case as a special case, will be considered here in detail. The second case
can be obtained from the first by a minor modification of the analysis, as will be shown
at the end of this section.

Consider now the solution of the posed problem. Referring to Fig. 3, let us divide the
z, t-plane into regions bounded by weak or strong discontinuities. We shall employ the
symbols e, , €, and v, to denote stress, strain and velocity in the nth region. Then, the
solution of our problem for ¢, < p, < 0. is as follows:

4
T t=1
5 /
t=1y
Y
x=Cq t
2 |
0
x=¢2(1)
p(t} = - X
P 0

Fic. 3. =z, t-plane (o, < po < 00).




19701 WAVE PROPAGATION IN A STRAIN-HARDENING ROD 465

Region 0. The rod is undisturbed, and
Uo=€0=vo=0. (6)

These expressions are valid forz > 0and 0 < ¢ < z/c, , where ¢, = (K,/p)">.

Region 1. This is a region of constant state and is separated from region 0 by the
strong discontinuity line z = c,t, across which the first of the stress-strain relations (3a)
applies. Since the initial end-stress p, is applied instantly and has a magnitude greater
then o, , we have

01 = 0y, €& = € = av/(PCE)’ UV =0, = Uv/(PCO); (7)

where the shock relations (5) with ¢(f) = ¢t have been employed. The stress-strain state
in (7) corresponds to point A in Fig. 1.

Region 2. This region is separated from region 1 by the shock z = ¢,(t). In view of
(3b), when the initial end-stress is increased beyond the yield stress s, , each increment
of stress is propagated along the rod with a monotonically increasing velocity c(e) =
[f'(e)/p]"* = clg(c)], where g(o) is defined by

e =g(0) = {7(o). ®)

Here {7" is the inverse mapping of the function f, i.e. ¢ = f7*(¢). Such a condition leads
to the development of a shock wave eminating from the origin of the z, ¢-plane. If super-
imposed bars are used to indicate values at the shock, the shock relations (5) yield the
following expression for the shock trajectory x = ¢.(f):

plos)] = (@) — 5:())/ (&) — &(®). C)

In view of the right member of (9), the quantity p[#,(¢)]® is precisely the slope of the
chord with end points (3, , &) and (4, , &) (e.g., the line A D in Fig. 1) on the loading
portion of the stress-strain curve provided that ¢, > &, . If the stress just behind the
shock is less than that ahead of the shock, the shock velocity becomes infinite in view of
(8c) and (9). If we define region 2 to be a region for which 5.(t) > o, , then across the
shock the second of stress-strain relation (3a) (or (8)) applies and

& = f(&) or & = g(G.) = [(5). (10)

By definition of 7, , unloading must take place in regions 2—4 (since the stress level at
the impact face is not maintained). Hence, from (3c) we obtain

&, t) = en(z) = é2(0]:--\1'3(:) for oz, t) < 52(t)|:-v,(x) ) (11)
where ¥,(x) is the inverse of ¢.(), i.e.,
t = V;(2) = ;' (). (12

It is evident that &,(¢) is a monotonically decreasing function of ¢{. With the aid of
the stress-strain diagram and by virtue of (7) and (9), it can be observed that the shock
velocity ¢4(f) is also a monotonically decreasing function of ¢{. The latter satisfies the
initial condition

$1(0) = {(po — a.,)/plg(po) — &1} (13)
Substituting now (11) in (2), we find that
0y(t) = 0(); (14)
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thus, (1) may be integrated with respect to z to furnish

oz, t) — p() + pavi(t) = O. (15)
By virtue of the boundary conditions

02(0,t) = p(t) and o,¢:(t), t] = 3.(2), (16)

the following two equations result from (15):
ox(z, ) = p(t) — z[p() — 32())/e=(0) an
p(l) = ) = poull) 22 (s)

In view of (7), the shock relations (5) become
G2 — 0, = ppi(H: — v,), (192)
v — v, = d(D)(&() — &) (19b)

Equation (19a) indicates that
0:(0) = v, + (po — 0,)/[pd3(0)]. (20)

Adding (18) and (19a) together and integrating the resulting equation with respect to
t, we obtain

ul®) = v, + GO/ 60 = [ GO — o) & @1)

where we have used the initial condition (20) and ¢.(0) = 0. Upon substitution of (21)
into (19), the following expressions for stress and strain at the shock are obtained:

&) = o, + I(NG(1)/$:()) (22a)
&() = & + G(0)/[pp:():(1)]. (22b)

Substituting these equations in (10), (11) and (17), we arrive at the following expressions
for e(x), o2(x, t) and ¢,(f) respectively:

&(1) = ¢ + G(¥2(2))/[pad;(¥2(2))], (23a)
a2z, ) = p(t) — z[p(t) — o, — ¢'(OG(®)/$:2(1)]/:(D), (23Db)
o, + $5(OG () /¢:(t) = fle, + G(1)/ (pb2(t)d;(E))], (24a)
or
glo, + #:()G(0) /0:(1)] = & + G(O)/ (0d2(D)93(2))- (24b)
Equation (24), together with the initial condition
$.(0) = 0, (24c)

constitutes an initial-value problem for the determination of the shock trajectory z =
¢2(t). This equation is a nonlinear differential equation of the first order. For certain
specific stress-strain relations, closed-form solutions are obtainable, as will be shown in
the next section. Once ¢,(t) is known, o:(z, ), €(x) and v,(f) can be obtained from (21)-
(23).
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In the above expressions, the unknown quantities o, , e, and v, were expressed in
terms of the unknown function ¢.(t), which is governed by the initial-value problem (24).
An alternative way is to let &/(t) (or #.(f)) play the role of ¢.(t); then, from (10), (19) and
(22), we have

&) = @), ), O<t<r) (252)
&) = g(.), (25b)
where
) _ 2[f(&) = o,]lp(®) — f(&)] ~
Ma® ) = GO e + 0@ — /@ — el (25¢)
(f'(&) = df/de,).
Integrating (25a) with respect to ¢ and using (25b), we have
G = o) + [ ha@,9ds 0 <1< ), (26)

which is a nonlinear Volterra integral equation. Therefore, the theory of integral equa~
tions can be employed to prove the existence and uniqueness of the solution of (26) on
an appropriate time interval 0 < ¢ < T < 7, ; in particular, we may use the Picard
method of successive approximations for an approximate solution [4].

When the stresses just ahead and behind the shock z = ¢,(t) reach the same value
(G, = o, in this case), say at t = 7, , we have from (22a)

6t = [ " p© dt — ayr, = 0, 263)

and (21) and (22b)
Ez(Tu) = €, 1)2(1',,) = Uy . (26b)

Thus, the stress-strain state at ¢ = 7, at the shock front corresponds to point A in Fig. 1.
Note that the time 7, may be greater or smaller than = depending on the form of p(t).
For simplicity, however, only the case 7, < 7 will be considered here. (The solution
method for the case r, > 7 is essentially the same.)

Region 3. This region is separated from regions 1 and 2 by the strong discontinuity
line ¢ = 7, (see discussion following Eq. (9)). Unloading now takes place in the portion
0 < z < ¢yt of the rod. Substituting ¢(t) = c.t in the equation of rigid-body translation
(18) and the shock relations (5), we obtain

PO = as) = peot B (272)
73(t) = peovs(t) = pcgés(t). (27b)

Eliminating &5 from (27a) and the first equality of (27b), and solving the resulting equa-
tion by utilizing the initial condition

U3 (Tu) =0, = a'u/pco ) (28)
we obtain

) = [ [ 90 de o | [ @)
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Substituting (29) in (27b) we find

50 = | [ 20+ o] /1
2 = [ [ 90 de + | / o

The quantities o3(z, ¢) and e;(x) are obtained from (11), (17) and (30) as follows:

as(z, 1) = p(t) — Et_t {p(l) - [ f p@®) dt + rm] / t} , (31)

(1) = () for 0 <2z < ¢,(7,) (cf. (232))
=& for ¢u(r,) < 2 < cot (32)

(30)

t=z/co
[ f p() dt + om] / (pcox)  for cor, < @ < ot
It is easily shown from (7), (23b), (26a) and (31) that ¢ = 7, is a line of strong discon-
tinuity (the stress is discontinuous while the strain and velocity are continuous across
t = 1,).
Region 4. This region is separated from regions 3 by the line of weak discontinuity
= 7. Since p(f) is everywhere zero in this region and the shock equation x = ¢, is the
same as that of region 3, the solution is readily obtained from the expressions (29)-(31)
by setting ¢ = 7 for the upper limit of integration. For example,

i = | [ 50 dt + o | / e 33

Eq. (33) indicates that unloading continues indefinitely.

All expressions obtained thus far are valid for the case ¢, < p, < o. . With the follow-
ing minor modifications, they are also valid for the cases p, > ¢. and p, < 0, .

Case of po > o.. The z, i-plane for this case is illustrated in Fig. 4. A new region,
which we denote by “A’”’, now appears because ¢ }(f) > ¢, (see the discussion immediately
following Eq. (9)) in 0 < ¢ < 7., where 7, is the critical time defined by ¢,(7.) = o, .
The expressions for v,(f), o4(z, ¢) and e,(z) and the differential equation for ¢, (f) are
obtained from (20)—(24) by setting ¢, = v, = ¢, = 0. For example, from (21) and (24),
we have

va = [ 26 &/ ea0) (34a)

and
40 [ 90 d/out) = f{ IRG ds/[m(ooss(t)]} (34b)
$4(0) = 0. (34c)

Fort > 7., the stress immediately behind the shock has a value less than py(7.(f) <
Do) and thus ¢4(t) < ¢, . Therefore, the shock z = ¢4(r.) + ¢o(t — 7.), which is tangent
to the shock trajectory z = ¢,(7.) at t = 7. and z = ¢,(r.), propagates ahead of the
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t

x =¢hy (1)

F16. 4. =z, t-plane (po > o).

shock z = ¢,(f). Hence, except for initial conditions, the problem for ¢ > 7, is again
reduced to that of case (i)(s, < po < c.). Employing the initial conditions’

(e = va(r) = [ 90 de/opa(r), (352)

¢2(Tc) = ¢A(7c) (35b)

in place of (20) and (24c) respectively, the expressions (or differential equations) for
a2(z, 1), v2(), $2() in 0 < z < ¢a(7,)” and® e(x) in ¢4(r.) < = < ¢u(r,) are readily ob-
tained from (21)-(24) by replacing the function G(¢) with G(t) 4+ a, where @ = o,(r, —
¢(r.)/(co) < 0. Similarly, the solution in regions 3 and 4 are obtained from previous cases
by shifting the origin of the shock z = cot from (0, 0) to (¢.(7.), 7.), ete.

Case of p, < o,. Thisis a special case of the case (i)(¢, < po < ¢.) in which regions
1 and 2 (Fig. 3) and 7, vanish. Thus the solutions (in regions 3, 4) are obtained from (29),
(32) and (33) by setting =, = 0.

Other special cases. A combination of the vanishing of one or both of ¢, and e, yields
three special cases. Here o, becomes infinite and ¢, is either O or infinity, which result
in certain simplifications of our solutions.

In the remainder of this paper, unless otherwise noted, the initial impact stress p,
is assumed to be less than o, .

3. Closed-form solutions for the power stress-strain law. Consider now a class of
materials whose stress-strain relation is defined by (32)-(3c)(allowing f'(¢) = 0 at ¢ =
¢;) in which the function f(e) takes the form

fle) = o, + k(e — ¢)"(n 2 1, k, = const. > 0,0 > o,). (36)

1 The condition (35a) follows from (5) for ¢'(f) = «.
? e(x) = ea(z) in 0 < 2 < ga7o).
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For such a stress-strain law, (24) becomes

(SOOI = (Ra/ GO, 6(0) = 0, 37
which can easily be integrated to yield
_ om ]&1)1/(“1) : ](nu)/zn

where

P = [ 6@

If we express the shock equation in the form ¢ = ¥,(z), then (38a) gives

n\1/(n+1)
F(@) = (p—> e, (38b)

2n  \k,
Equation (38a), together with (21)—(23), furnishes
v:(t) = v, + G(O)/[("k)"""((2n/(n + DYF.(B))" 7],
&) = o, + (0 + DGOV /[20F. ()],
ox(z, 1) = p(1) — z[p()) — 5:()]/:(0),
@) = ¢ + {G[¥:(2)]/[(ok,)' 2]},

where ¥, (x) is implicitly expressed by (38b).
Before proceeding further, let us examine the character of the stress just behind the
shock. Integrating by parts, we can rewrite the second of (39) in the following form:

(39)

6(f) = o, — f GEI™" " pE) — o,) dE/Fa(D)
° (40)
=90 — [ For® a/r.0),
from which
30 = [G(t)]‘"'“""*”[ [ reve |/ nor. (41
In view of (4) and the definition of G(f) given in (21), it is evident that
G@) > 0, F.t) >0 for 0<t<n, (42)
which, upon combining with (40)-(41), implies
() > p(@) and &4(f) <O, (43)

as was expected. Similarly, it can be shown that ¢.(f) is a monotonically increasing
function of ¢ while ¢4 (t), v.(f) and ¢,(f) are monotonically decreasing functions of ¢ in
0 <t < 7,.If the condition p’({) < 01in (4) is replaced by p’(¢) < 0, then (40) and (41)
reduce to

G2() 2 p(t) and (1) < 0. - (44)




19701 WAVE PROPAGATION IN A STRAIN-HARDENING ROD 471

Thus, in view of the unloading stress-strain relation (3c), the results obtained in the
present and previous sections remain unchanged. Therefore, having obtained the closed-
form solutions in region 2, we thus have a complete closed-form solution in the entire
z, t-plane since the solutions in all other regions are the same as those in Sec. 2.
- Writing
k., = (¢* — 0,)/(e* — ¢)"(s, < o* = const., ¢, < ¥ = const.) (45)
the function (38) reduces to
fle) = o, + (6% — a,)(e — &)"/(¢" — &)"(e = ¢,). (46)

The ¢ = f(e) curves corresponding to (46) for various n are illustrated in Fig. 3. When
n approaches infinity, (46) becomes
lim f(e) = o, for € < €*
e @7
lim e = €* for e > €*

n—®

which correspond to the segments AB, BD in Fig. 2. Substituting (45) into (37)—(39)
we obtain, as n approaches infinity,

o) = .0/t — (Pt = [ G0 ).

v(l) = v, + GO — &)/(2pFa(D)]", (a8)
o2(@, 1) = p(t) — zlp()) — o, — (G /QF(D))/:(0),

which are the solution in region 2 for the loading stress-strain curve OABD in Fig. 2.
Note that this solution remains valid in an interval 0 < ¢ < T even if p(f) is not a monoto-
nically decreasing function of ¢, as long as the conditions

Po>o0, and () > e, In 0<t<T (49)
are satisfied. The last condition requires that
Gt) >0 for 0<t<T. (50)

The closed-form solutions given above can be used to construct a new solution for
the stress-strain curve composed of a finite number of segments of the class of curves
(36) (with different n assigned to cach segment).

Remarks concerning the case po > o, . Substituting (36) in (34b), we obtain

[s100 [ p0d] /o) = o+ k..[@z}) o | o - o ew
84(0) = 0. (51b)

This equation cannot be integrated in a closed-form unless n — o (locking material).?
The solution for ¢ > 7, (regions 2-4), however, can be obtained in a closed-form as before.
4. Concluding remarks. One-dimensional wave propagation in a semi-infinite strain-

8 Note that o, and ¢, are both nonvanishing in order that the inequality ¢. > p, be meaningful.
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hardening rod, subjected to compressible end-stress, was considered in this paper. It
was shown that an analytical solution is possible in the entire z, {-plane provided the
constitutive equations of the rod are as indicated in Fig. 1 and the end-stress is applied
suddenly and thereafter monotonically decreases to zero. In particular, closed-form
solutions are obtained if the strain-hardening portion of the constitutive equation obeys
a power law. It was also indicated that these closed-form solutions can be combined in
various ways to construct new closed-form solutions.
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